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This paper studies two-player games in continuous time with imperfect
public monitoring, where information may arrive both continuously, governed
by a Brownian motion, and discontinuously, according to Poisson processes.
For this general class of two-player games, we characterize the equilibrium
payoff set via a convergent sequence of differential equations whose solutions
approximate the boundary. Equilibrium strategies that attain payoff pairs on
the efficient frontier are elicitable from the limiting solution. The analysis
reveals the drastic influence of abrupt information on the equilibrium payoff
set: because the presence of abrupt information enables equilibrium incentives
through value burning, the equilibrium payoff set may contain corners and
straight line segments outside the set of static Nash payoffs—two features that
are precluded in games with a continuous stream of information.
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1 Introduction

In continuous-time games with imperfect monitoring, information may arrive both
continuously through a noisy signal and intermittently as occurrences of infrequent
but informative events. In many applications, there is a clear distinction between
the two types of information. Consider a climate agreement that obligates each
signatory to reduce its greenhouse gas emissions. Countries cannot measure each
other’s emissions directly, hence they must rely on imperfect information to enforce
the agreement. When one country violates the terms of the agreement and emits
more than its agreed-upon share of greenhouse gases, other countries may observe
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Figure 1: The total revenue of the partnership (top panel) consists of normal market fluctuations
(bottom left panel) and shocks due to bad press (bottom right panel). Both components carry
important information about past play: the expected rise in continuous revenue µ and the intensity
of the scandals λ depend on the chosen effort levels.

an increase in industrial production or an increase in the atmospheric greenhouse
gas concentration—information that is suggestive but not conclusive proof that the
country has violated the agreement. These observations or measurements are possi-
ble at any point in time and are best modeled using a continuous but noisy signal.
In addition to these continuous processes, countries also observe infrequent but in-
formative political and economic events such as the passing of an environmental bill
or the commissioning of a coal power plant. These events are inherently discrete and
are better modeled using counting processes that jump when one of these events is
observed. In another example, consider a partnership between two firms, where each
firm chooses hidden effort levels and observes only the total revenue of the partner-
ship. The total revenue moves continuously due to day-to-day fluctuations in supply
and demand conditions and it is subject to demand shocks when one of the firms
receives bad press. As illustrated in Figure 1, a decomposition of the information
leads to two separate signals that are both indicative of the partner’s effort level: the
continuous increase in total revenue without the impact of demand shocks and the
frequency at which scandals occur. The goal of this paper is to characterize the set
of all equilibrium payoffs in two-player games, where information may arrive both
continuously and abruptly. Compared to the existing literature, the more general
information structure allows for a wider class of incentives that can be provided to
players, thereby fundamentally changing the shape of the equilibrium payoff set.

Repeated games provide a very tractable framework to model sustained interac-
tion between strategic decision makers. To a large extent, the tractability stems from
the time homogeneity of the decision problem: because players face the same deci-
sion tomorrow as they do today, subgame perfect equilibria can be constructed in a
recursive fashion as demonstrated in the works of Abreu, Pearce and Stacchetti [2, 3].
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While these recursive techniques have been extremely fruitful in understanding incen-
tives in repeated interactions, the continuous-time methods may give rise to explicit
results that are not available in discrete time. In his seminal paper, Sannikov [20]
shows that for two-player games with Brownian information, it is possible to express
the curvature of the equilibrium payoff set in terms of the unique equilibrium incen-
tives at that point. As a result, the boundary of the equilibrium payoff set can be
described by an ordinary differential equation. Such an explicit characterization of
the equilibrium payoff set for any level of discounting is a result without analogue
in discrete time, where results on equilibrium payoffs are often limited to folk the-
orems and payoff bounds; see Fudenberg, Levine and Maskin [10] and Fudenberg
and Levine [8], respectively. Crucial for Sannikov’s result is the assumption that
information is Brownian, that is, information arrives continuously in small but noisy
increments. This assumption, however, does not come without loss of generality.1

Aside from the modeling perspective that certain events are inherently discrete, the
assumption on Brownian information also restricts the types of incentives that can
be provided to players in equilibrium. As argued in Sannikov and Skrzypacz [22], it is
too costly to attach mutual punishments to undesirable outcomes of Brownian infor-
mation: because Brownian information is so noisy, the chance of wrongfully entering a
punishment phase is too large and too much value is destroyed in expectation. There-
fore, incentives at extremal equilibrium payoff pairs in Sannikov [20] are restricted
to tangential transfers of value between players. While these types of incentives are
sufficient to prove a folk theorem, we know from Green and Porter [11] that the de-
struction of value upon the arrival of an undesirable signal can be an efficient way of
providing equilibrium incentives to impatient players. This paper characterizes the
equilibrium payoff set for any level of discounting in an information structure that
allows for both types of incentives in equilibrium. This is achieved by complementing
the Brownian information structure with the observation of infrequent events, whose
arrival times are governed by Poisson processes.

When information arrives also abruptly, the equilibrium payoff set may have cor-
ners outside the set of static Nash payoffs. These corners correspond to stationary
payoffs that may arise when incentives are provided through the abrupt information
only. When incentives depend on abrupt information exclusively, only two factors
impact the players’ continuation values: the current extraction of instantaneous flow
payoffs and the expected punishments/rewards that players receive upon the arrival
of a discrete event. At extremal equilibrium payoff pairs, these two forces offset

1In the theory of discrete-time repeated games with public monitoring, barely any distributional
assumption have to be made on the public signal. The only restriction is that the signals in different
periods are independent and conditionally identically distributed, given the played action profile,
to ensure homogeneity over time periods. Public signals that satisfy a similar time homogeneity
property in a continuous-time setting are Lévy processes—a class of signals that includes not only
Brownian motion, but also discontinuous processes with independent increments.

3



each other precisely so that the players’ continuation values remain locally constant.
At stationary payoffs, any equilibrium profile prescribes a locally constant play of
actions until the next infrequent event is observed. Indeed, since the continuous in-
formation is not used to provide incentives, relevant information arrives only with
the arrival of infrequent events. Until such an event occurs, players receive no new
information that warrants an adjustment of their chosen actions.

New in this paper is also the the characterization of the equilibrium payoff set
when the observed information is Brownian but does not satisfy the pairwise iden-
tifiability condition assumed in Sannikov [20]. In particular, the characterization is
new for any game with a one-dimensional signal, which contains the important appli-
cations of a Cournot duopoly in a single homogeneous good and partnership games,
where only the total revenue is observed. When action profiles fail to be pairwise
identifiable, deviations by the two players cannot necessarily be distinguished sta-
tistically by observing the public signal. Fudenberg, Levine, and Maskin [10] have
shown that a pairwise identifiable action profile can be enforced by transferring value
between players at any rate. Without pairwise identifiability, this is no longer the
case and instead, there may be a minimal/maximal rate at which players are willing
to transfer value. While this may result in a collapse of the equilibrium payoff set
to the set of static Nash payoff in some games, in other games the players locally
keep transferring value at these limiting rates. In these games, the boundary of the
equilibrium payoff set may have straight line segments, where the slope corresponds
to the minimal/maximal rate at which players transfer value in equilibrium.

At corners or straight line segments of the equilibrium payoff set, the unique
equilibrium incentives may necessitate that the continuation value enters the interior
of the equilibrium payoff set with certainty. This stands in contrast to the setting
of Sannikov [20], where the continuation value is absorbed on the boundary once
the boundary is reached. This shows that a bang-bang property does not hold for
continuous-time games if players observe abrupt information or if the continuous
information does not satisfy the pairwise identifiability condition.

We find that neither type of information dominates the other in terms of impact on
equilibrium payoffs. The two types of information merely serve different purposes.
Abrupt information may enlarge the set of enforceable action profiles by attach-
ing large punishments/rewards to the observation of infrequent events. Information
through these infrequent events, however, arrives too sparsely for players to react to
each other dynamically. Therefore, incentives through the continuous signal are nec-
essary outside the set of stationary payoffs. Moreover, because abrupt information is
tied to the burning of value, it is used on the efficient frontier only if insufficient incen-
tives can be provided through transfers, that is, abrupt information is used to provide
the residual incentives that cannot be provided by the continuous information.

From a methodological point of view, the treatment of abrupt information is quite
challenging. Sannikov [20] shows that when information is Brownian, only local in-
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Figure 2: Because Brownian information is used to transfer value between players along tangents,
only local information about the geometry of the equilibrium payoff set E is needed to structure
incentives at a payoff pair w on the boundary. In contrast, abrupt information may induce jumps
in the continuation value that are required to remain in E—requiring global information about E .

formation about the boundary of the equilibrium payoff set is needed to characterize
the set of equilibrium payoffs, in the same way that any ODE uses only local informa-
tion about a function to encode its global properties. Crucial in this respect is that
Brownian information is used only to transfer value between players tangentially.
Equilibrium incentives at the boundary thus depend on the equilibrium payoff set
only through the direction of the tangent, i.e., only through local information about
the geometry of the equilibrium payoff set. In contrast, when information arrives
according to Poisson processes, such signals can be used also to provide incentives
via value burning. Any punishments or rewards are consistent with equilibrium be-
havior as long as the continuation value remains within the equilibrium payoff set.
This restriction on incentives, however, depends on the entire geometry of the equilib-
rium payoff set. To describe the boundary locally through the equilibrium incentives,
global information about the set of equilibrium payoffs is required. The differential
equation describing the boundary of the equilibrium payoff set is thus self-referential.
We show that this self-referential differential equation can be approximated by a con-
vergent sequence of explicit ODEs that are obtained with an iterative procedure over
the arrival times of infrequent events. This requires the introduction of the new con-
cept of relaxed self-generating payoff sets, where in each step, the continuation value
after a punishment/reward due to the arrival of an infrequent event has to come from
the payoff set from the previous step. An iterated computation of the largest relaxed
self-generating payoff set, starting with set of feasible and individually rational pay-
offs, converges to the set of equilibrium payoffs. This algorithm is similar in spirit to
the discrete-time algorithm in Abreu, Pearce and Stacchetti [3]. However, contrary to
its discrete-time counterpart, the sets in every step of the continuous-time algorithm
can be computed efficiently as the numerical solution to an explicit ODE. Therefore,
this paper also contributes to the literature on computing equilibrium payoffs, pro-
viding an alternative to Judd, Yeltekin and Conklin [14] for two-player games and an
extension of Abreu and Sannikov [4] to imperfect monitoring. The concept of relaxed
self-generating payoff sets may be of interest in itself for future works in continuous-
time games where certain information arrives according to Poisson processes. This is
the case, for example, in continuous-time stochastic games with finitely many states.
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A variety of papers have analyzed discrete-time repeated games with frequent
actions, where the length of the time period shrinks to 0. Abreu, Milgrom, and
Pearce [1] have shown that in games with Poisson signals, the limit behavior as the
one-period discount factor converges to 1 crucially depends on whether the discount
rate is decreased or the frequency of actions is increased. Increasing the frequency
of actions may destroy incentives if the signals are not sufficiently informative and
hence the likelihood of erroneous punishments is high. Sannikov and Skrzypacz [21]
show that incentives are always destroyed in a Cournot duopoly with Brownian in-
formation as players act more frequently, leaving only static Nash equilibria in the
limit. Fudenberg and Levine [9] analyze asymptotic efficiency in games, where play-
ers observe cumulative signals of either a Poisson or a diffusion process. They find
that efficient limit behavior is obtained when players’ actions affect the volatility of
the diffusion and extreme realizations are indications of cheating. The first paper to
model the joint arrival of information through continuous and discontinuous processes
is Sannikov and Skrzypacz [22]. Combining the recursive techniques in [3] with the
restrictions on the use of continuous and abrupt information, they establish a payoff
bound for discrete-time games when the length of the time period approaches zero.
The current paper deviates from this stream of literature by directly studying the
continuous-time game. This allows a nuanced comparison of the different effects that
continuous and discontinuous information have on equilibrium payoffs: the trade-off
between the two types of information is captured in a sequence of ODEs that ap-
proximates the boundary of the equilibrium payoff set. Moreover, our techniques
allow us to elicit equilibrium strategies that attain extremal equilibrium payoff pairs.
A numerical solution of the characterizing sequence of ODEs computes the unique
enforceable action profile and its enforcing equilibrium incentives in each state of the
limiting solution. This determines equilibrium play uniquely on the boundary. For
example, in the partnership game with demand shocks presented in Section 3, any
payoff pair on the efficient frontier can be attained by play of one-sided effort until
some random event occurs, followed by a forgiving grim trigger strategy profile.

In terms of provided incentives, this paper differs from [22] in the fact that only
bounded amounts of value can be transferred or destroyed upon the arrival of an
infrequent event. This is not a difference in the underlying model, but rather in the
result that we prove: Cooperation between players requires larger punishments or re-
wards when players are impatient. To enforce equilibrium behavior, the continuation
payoffs after the punishments/rewards have to remain in the bounded equilibrium
payoff set. As players get more and more impatient, fewer incentives can be provided
through the observation of infrequent events. When players get too impatient, the
provided incentives could be insufficient to support equilibrium bahavior outside the
set of static Nash profiles and the equilibrium payoff set could collapse to the set of
static Nash payoffs. This is a feature not observed in [22] as their payoff bound relies
on incentives that can be provided when players are arbitrarily patient.
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The remainder of the paper is organized as follows. We introduce the continuous-
time model with the general information structure in Section 2. We provide a detailed
example of a partnership game with a preview of our results in Section 3. Section 4
contains the important concepts of enforceability and self-generation in our setting.
We develop the concept of relaxed self-generating payoff sets in Section 5 and show
how it is applied to approximate the equilibrium payoff set. In Section 6, we present
our main results: the characterization of any relaxed-self generating payoff set and
the iterative construction of equilibria. We discuss important implications of our
main result in Section 7 as well as how our result relates in more detail to the
existing literature. A description of how to implement the numerical solution of our
algorithm is presented in Section 8 and we conclude in Section 9. The vast majority
of the proofs are contained in Appendices A–E.

2 The setting

Consider a game where two players i = 1, 2 continuously choose actions from the
finite sets Ai at each point in time t ∈ [0,∞). The set of all pure action profiles
a = (a1, a2) is denoted by A = A1 × A2. Rather than directly observing each
other’s actions, players see only the impact of the chosen actions on the distribution
of a random signal. The public signal contains continuous, but noisy information
modeled by a d-dimensional Brownian motion Z and informative, but infrequent
observations of events of type y ∈ Y . We assume that there are finitely many
(possibly zero) different types of events in Y = {y1, . . . , ym}. Events arrive according
to Poisson processes (Jy)y∈Y that are independent from each other and independent
of the Brownian motion Z. An event of type y leads to a jump in the public signal
of size h(y) so that the public signal is given by X = Z +

∑
y∈Y h(y) Jy.

The public information at time t is a σ-algebra Ft that contains the history of the
processes Z, (Jy)y∈Y up to time t, as well as orthogonal information that players may
use as a public randomization device. Events of different types are thus observable
but their underlying intensities are not. Because we study perfect public equilibria,
a player’s choice of action at time t must be based solely on information in Ft, which
is formalized in the following definition.

Definition 2.1. A (public) pure strategy Ai for player i is an (Ft)t≥0-predictable
stochastic process with values in Ai.

The game primitives µ : A → Rd and λ(y | · ) : A → (0,∞) determine the impact
of a chosen action profile on the drift rate of the public signal and the intensity of

events of type y ∈ Y , respectively. Let λ(a) :=
(
λ(y1 | a), . . . , λ(ym | a)

)>
denote the

vector of intensities of all events. We assume that events of any type y are possible
after any history, that is, it is a game of full support public monitoring.
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Assumption 1 (Full support). λ(y | a) > 0 for all a ∈ A and all y ∈ Y .

Because at any time t, the chosen strategy profile affects the future distribution
of the public signal, play of a strategy profile A = (A1, A2) induces a family of
probability measures QA =

(
QA
t

)
t≥0

, under which players observe the public signal.2

On [0, T ] for any T > 0, the public signal signal takes the form

Xt =

∫ t

0

µ(As) ds+ ZA
t +

∑
y∈Y

h(y) Jyt ,

under QA
T , where ZA = Z −

∫
µ(As) ds is a QA

T -Brownian motion describing noise in
the continuous component and Jy has instantaneous intensity λ(y |A) under QA

T .

Remark 2.1. With the techniques in this paper it is possible to consider signals of
the slightly more general form X = σZ+

∑
y∈Y h(y) Jy for a k-dimensional Brownian

motion Z and covariance matrix σ ∈ Rd×k with rank d. Then σ has right-inverse
σ>(σσ>)−1 and the game is equivalent to the game with public signal

X̃t =

∫ t

0

σ>(σσ>)−1µ(As) ds+ ZA
t +

∑
y∈Y

σ>(σσ>)−1h(y) Jyt .

Indeed, the information carried by X̃ is identical to the information in X = σX̃.3

Anderson [5] and Simon and Stinchcombe [23] demonstrate that seemingly simple
strategies need not necessarily lead to unique outcomes in continuous-time games
of perfect monitoring. This is not a problem in our model because actions taken
by agents do not immediately generate information: Assumption 1 in conjunction
with the unbounded support of the normal distribution implies that any outcome
is possible after play of any strategy profile. In public monitoring games, one can
identify the probability space with the path space of all publicly observable processes,
and hence, a realized path ω ∈ Ω leads to the unique outcome A(ω). This is analogous
to discrete-time repeated games with full-support public monitoring; see Mailath and
Samuelson [17] for a thorough exposition of discrete-time games.

2Formally, Z and (Jy)y∈Y are defined on a probability space (Ω,F , P ) for a preliminary prob-
ability measure P . Under P , Z is a standard Brownian motion and Jy has intensity 1 for every
event y ∈ Y . The family QA =

(
QAt
)
t≥0 is defined via its density process relative to P , given by

exp

(∫ t

0

µ(As) dZs −
∫ t

0

(
1

2
|µ(As)|2 +

∑
y∈Y

λ(y |As−)− 1

)
ds

) ∏
0<s≤t
y∈Y

(
1 + (λ(y |As−)− 1)∆Jys

)
.

3Contrary to discrete-time models with frequent actions (c.f. Fudenberg and Levine [9]), the
volatility of the continuous component of the public signal is perfectly observable in a continuous-
time setting through its quadratic variation process. Therefore, players’ actions cannot affect the
volatility of the diffusion in a continuous-time game with imperfect monitoring.
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Definition 2.2. Let r > 0 be a discount rate common to both players. Each player i
receives an expected flow payoff gi : A → R.

(i) Player i’s discounted expected future payoff (or continuation value) under strat-
egy profile A at any time t ≥ 0 is given by

W i
t (A) =

∫ ∞
t

re−r(s−t)EQA
s

[
gi(As)

∣∣Ft] ds. (1)

(ii) A strategy profile A is a perfect public equilibrium (PPE) for discount rate r if
for every player i and all possible deviations Ãi,

W i(A) ≥ W i
(
Ãi, A−i

)
a.e.,4

where A−i denotes the strategy of player i’s opponent in A.

(iii) We denote the set of all payoff pairs achievable by PPE by

E(r) :=
{
w ∈ R2

∣∣ there exists a PPE A with W0(A) = w a.s.
}
.

The form of the players’ continuation value in (1) shows that the players’ strategies
affect their expected payoffs directly through their expected flow payoff and indirectly,
through the impact on the distribution of the public signal, which is reflected in
the change of measure in the expectation operator. Because the weights re−r(s−t)

in (1) integrate up to one, the continuation value of a strategy profile is a convex
combination of stage game payoffs. The set of feasible payoff pairs is thus given by
the convex hull of pure action payoff pairs V := conv {g(a) | a ∈ A}. By deviating
to his strategy of myopic best responses, each player i can ensure that his payoff in
equilibrium dominates his minmax payoff

vi = min
a−i∈A−i

max
ai∈Ai

gi(ai, a−i).

The set of equilibrium payoffs is thus contained in the set of all feasible and indi-
vidually rational payoffs V∗ := {w ∈ V | wi ≥ vi for all i}. Let AN ⊆ A denote the
set of sage-game Nash equilibria and denote by VN := conv

{
g(a)

∣∣ a ∈ AN} the
corresponding payoff pairs. Because indefinite play of a stage-game Nash profile is a
PPE, we obtain the inclusions VN ⊆ E(r) ⊆ V∗ ⊆ V . Observe that E(r) is convex
because players are allowed to use public randomization. Indeed, for any two PPE
A and A′ with expected payoffs W0(A) and W0(A′), respectively, any payoff pair
νW0(A) + (1 − ν)W0(A′) for ν ∈ (0, 1) can be attained by selecting either A or A′

according to the outcome of a public randomization device at time 0.
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Figure 3: The left panel shows the matrix of stage game payoffs. The right panel shows the
equilibrium payoff set Eγ(5) as a subset of V∗ for γ ranging from γ = 0 (dark red) to γ = 1 (yellow) in
increments of size 0.2. The boundary is dashed where the unique equilibrium incentives do not make
use of the abrupt information. If the continuous signal is relatively uninformative (γ high), abrupt
information is required to enforce non-trivial equilibria. As the informativeness of the continuous
signal increases, players can transfer larger amounts of value in equilibrium, which widens the
equilibrium payoff set. If the abrupt information is relatively uninformative (γ low), the action
profile of mutual effort is not enforceable, hence Eγ(5) collapses below the negative diagonal D.

3 Example of a partnership game

Consider a partnership game between two players, where each player continuously
chooses an effort level from the set Ai = {0, 1} at every point in time t. We suppose
that players receive an expected flow payoff of gi(a) = 4(a1 + a2) − a1a2 − 5ai, that
is, players enjoy output but dislike effort. Players cannot observe each other’s effort
levels and instead see only the continuous stream of revenue Xγ and the arrival of
demand shocks JA,γ, where the parameter γ ∈ [0, 1] captures the relative informative-
ness of the two signals as defined below. The continuous stream of revenue satisfies
dXγ

t = µγ(At) dt+ dZA,γ
t for a Brownian motion ZA,γ

t , where

µγ(a) = (1− γ)
(
4(a1 + a2)− a1a2

)
.

On average, the continuous stream of revenue increases with effort but the increase di-
minishes with additional effort. The arrival of demand shocks is governed by a Poisson
process JA,γ with instantaneous intensity λγ(At), where

λγ(a) = γ
(
21− 4(a1 + a2)− 12a1a2

)
.

4Deviations of a PPE are not profitable almost everywhere (a.e.), that is, the inequality
W i
t (A;ω) ≥W i

t

(
Ãi, A−i;ω

)
holds for every pair (ω, t) except on a set of P ⊗ Lebesgue-measure 0.
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Figure 4: The equilibrium payoff set E0.6(5) is shown together with the path of the continuation
value of a forgiving grim-trigger strategy profile attaining w∗. The solid arrow indicates the minimum
amount of value that has to be burnt upon the arrival of a demand shock to enforce the action profile
of mutual effort. During the Nash punishment phase, the players’ continuation value increases along
the dashed arrow until it is equal to w∗ again. The zoom-in in shows that w∗ lies below the stage-
game payoff pair g(1, 1) precisely by the minimum expected value burnt by the punishment.

Demand shocks arrive rarely when both players are exerting effort but they arrive
not that much more frequently if neither player is exerting effort than when only
one player is exerting effort. Figure 3 shows the equilibrium payoff sets for r = 5
and different values of γ. For low values of γ, the continuous information is at
its most informative, whereas the abrupt information gets more informative as γ
increases. Note that the characterization is new even for the continuous-monitoring
game (γ = 0) because the signal is one-dimensional.

As the figure shows, neither type of information dominates the other in terms of
impact on equilibrium payoffs. The two types of information merely serve different
purposes. Abrupt information may enlarge the set of enforceable action profiles
because of the added possibility for value burning: by burning at least 5/(8γ) payoff
units for each player upon the arrival of a demand shock, the action profile of mutual
effort is enforceable. If the demand shocks are sufficiently informative (γ ≥ 1/3), the
action profile of mutual effort can be enforced in equilibrium and the most efficient
symmetric equilibrium payoff pair is w∗ = (1.875, 1.875). The payoff pair w∗ is
stationary, that is, the players’ equilibrium continuation values remain constant while
both players exert effort. Only when a demand shock occurs, players burn value by,
say, entering a Nash punishment phase for a certain amount of time; see Figure 4. If
the demand shocks are uninformative (γ < 1/3), the equilibrium payoff set collapses
below the diagonal D, which connects the stage-game payoffs of one-sided effort
g(1, 0) and g(0, 1). Information through demand shocks, however, arrives too sparsely
for players to react to each other dynamically. Because the time interval between two
demand shocks is unbounded, players cannot rely exclusively on abrupt information
outside the set of stationary payoffs. The continuous information serves for players to
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Figure 5: On curved parts of the boundary, only one player exerts effort. The action profile of
one-sided effort is enforced using tangential transfers. At the payoff pairs wA and wB , where the
boundary becomes straight, the continuation value of any equilibrium enters the interior of E0.6(5).
Two such sample paths starting at wA are shown.

react to each other dynamically. As the informativeness of the continuous information
increases, Figure 3 shows that the equilibrium payoff set gets wider because players
are able to transfer larger amounts of value between each other in equilibrium.

Because the use of abrupt information is necessarily tied to the burning of value
where the boundary is curved (as jumps into the set lie below the tangent), abrupt
information is used sparingly on the efficient frontier. Figure 3 shows that abrupt
information is used on the boundary only where the curvature is large: on the efficient
frontier, incentives are provided through value transfers based on the continuous
information for as long as these incentives are sufficient. Because smaller tangential
transfers are possible in equilibrium where the curvature is large, these incentives are
insufficient and abrupt information is used to provide the residual incentives.

Equilibrium actions and incentives are unique on the boundary. This allows us
to elicit equilibrium profiles that attain extremal equilibrium payoff pairs. The only
behavior consistent with equilibrium behavior at w∗ is mutual exertion of effort,
followed by a punishment phase upon the occurrence of a demand shock that yields
an expected payoff of wi∗ − 5/(8γ) for each player i = 1, 2. For γ > 1/3, this can
be achieved by a forgiving grim-trigger strategy profile as illustrated in Figure 4,
but other forms of punishment are possible in equilibrium as we will elaborate in
Section 7. For lower values of γ, the demand shocks arrive less frequently, hence
more severe punishments are necessary to deter deviations. For γ = 1/3, the only
sufficiently strong punishment is a permanent reversion to the static Nash profile,
i.e., w∗ is attainable only by an unforgiving grim-trigger profile. For γ < 1/3, no
conceivable punishment deters shirking by either player, hence w∗ is not attainable
in equilibrium anymore.

On the curved parts of the boundary, equilibrium behavior prescribes one-sided
exertion of effort; see Figure 5. The action profiles of one-sided effort are enforced
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by transferring value between players tangentially to the set. The minimal/maximal
rates, at which players are willing to transfer value, are reached at the payoff pairs
wA and wB, respectively, as indicated in Figure 5. Where the boundary is strictly
curved, the continuation value locally remains on the boundary until a demand shock
occurs. At the payoff pairs wA and wB, however, the continuation value enters the
interior of the equilibrium payoff set with certainty; see Figure 5. Players keep
transferring value at the extremal rate until the continuation value either reaches
the boundary again or it reaches the positive diagonal of symmetric payoff pairs. In
the former case, the same player keeps exerting effort and incentives are provided
through tangential transfers. Because of the volatility in the players’ continuation
value, the diagonal is reached eventually either in the interior of the set or at w∗.
On the diagonal, players adopt a forgiving grim-trigger strategy profile (starting
with the punishment phase if the continuation value is in the interior of the set).
Therefore, any extremal equilibrium payoff pair can be attained by the equilibrium
profile of one-sided effort followed by a forgiving grim-trigger strategy profile.

4 Enforceability and self-generation

As in any game with imperfect monitoring, players’ incentives are tied to the public
signal. We thus start this section by stating the dependence of the continuation
value on the public signal. The following stochastic differential representation is the
extension of Proposition 1 in Sannikov [20] to games with abrupt information.

Lemma 4.1. For a two-dimensional process W and a pure strategy profile A, the
following are equivalent:

(i) W is the discounted expected payoff under A.

(ii) W is a bounded semimartingale which satisfies for i = 1, 2 that

dW i
t = r

(
W i
t − gi(At)

)
dt+ rβit

(
dZt − µ(At) dt

)
+ r

∑
y∈Y

δit(y)
(
dJyt − λ(y|At) dt

)
+ dM i

t
(2)

for a martingale M i (strongly) orthogonal to Z and all Jy with M i
0 = 0, pre-

dictable processes βi and δi(y) for y ∈ Y , satisfying EQA
T

[∫ T
0
|βit|

2
dt
]
<∞ and

EQA
T

[∫ T
0
|δit(y)|2λ(y |At) dt

]
<∞ for any T ≥ 0.

The process rβi is the sensitivity of player i’s continuation value to the continuous
component of the public signal and the processes rδi(y) are the impacts on player i’s
continuation value when an event of type y ∈ Y occurs. Note that in expectation, the

13



impact of the public signal on the continuation value averages out as Z −
∫ ·

0
µ(At) dt

and Jy −
∫ ·

0
λ(y|At) dt for every y ∈ Y are martingales under QA. Nevertheless, the

exposure to the public signal is relevant to provide incentives as we shall see below.
In expectation, player i’s continuation value moves away from the expected flow
payoff rate gi(A) towards W i(A): if player i currently extracts a higher/lower payoff
rate than he receives in expectation, this has to be balanced out in the future by
decreasing/increasing the player’s continuation value. To keep the notation succinct,
we use δi to refer to the row vector (δi(y1), . . . , δi(ym)) containing the impacts on i’s
continuation payoffs for all types of events.

In discrete-time games, incentives are provided by a continuation promise that
maps the public signal to a promised continuation payoff for every player; see, for
example, Abreu, Pearce and Stacchetti [3]. The representation in (2) shows that
in continuous-time games, the continuation value is linear in the public signal and
hence, so is the continuation promise. Similarly to Sannikov [20] and Sannikov and
Skrzypacz [22], the incentive compatibility conditions take the following form.

Definition 4.2. An action profile a ∈ A is enforceable if there exists a continuation
promise (β, δ) with β = (β1, β2)

> ∈ R2×d and δ = (δ1, δ2)
> ∈ R2×m such that for every

player i, and every deviation ãi 6∈ Ai \ {ai},

gi(a) + βiµ(a) + δiλ(a) ≥ gi
(
ãi, a−i

)
+ βiµ

(
ãi, a−i

)
+ δiλ

(
ãi, a−i

)
. (3)

We say such a pair (β, δ) enforces a. A continuation promise (β, δ) strictly enforces
a if (3) holds with strict inequality for both players. A strategy profile is enforceable
if and only if it takes values in enforceable action profiles almost everywhere.

The expression in (3) highlights that a deviation of a player i impacts his dis-
counted expected future payoff in two ways: by the change of expected flow payoff
r
(
gi(Ãit, A

−i
t )− gi(At)

)
dt and by the change in the distribution of the public signal.

For sensitivities (β, δ) in (2), this change of distribution has an expected impact on
player i’s continuation value of rβt

(
µ(Ãit, A

−i
t )−µ(At)

)
dt+rδt

(
λ(Ãit, A

−i
t )−λ(At)

)
dt.

Thus, if the sensitivities (β, δ) of the continuation value to the public signal are the
continuation promises made to enforce A—that is, the promises are kept—then no
player has an incentive to deviate from A. This is formalized in the following lemma,
which is a generalization of Proposition 2 in Sannikov [20] to our setting.

Lemma 4.3. A strategy profile is a PPE if and only if (β1, β2) and
(
δ1(y), δ2(y)

)
y∈Y

related to W (A) by (2) enforce A.

Lemmas 4.1 and 4.3 motivate how we construct equilibrium profiles in continuous
time—as the solution to (2) subject to the enforceability constraint in (3). Because
there is no notion of a terminal value, the theory of backward stochastic differential
equations cannot be applied to infinitely repeated games. Instead, we use the concept
of self-generating payoff sets to construct forward solutions similarly to discrete time.
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Definition 4.4. A payoff set W ⊂ R2 is called self-generating if for every w ∈ W ,
there exists a solution W to (2) for processes A, β, δ, and M such that (β, δ) en-
forces A, W0 = w a.s. and Wτ (A) ∈ W a.s. for every stopping time τ .

Similarly as in discrete time, the equilibrium payoff set is the largest bounded
self-generating set. For the sake of reference, we state this property as a lemma. The
proof is easily derived from the proof of Lemma 2 in Bernard and Frei [7] as that
proof works more generally for signals given by any Lévy process.

Lemma 4.5. The set E(r) is the largest bounded self-generating set.

5 Iteration over arrival of abrupt information

The characterization of the equilibrium payoff set as the largest bounded self-genera-
ting set allows us to construct equilibria using a stochastic control approach. Because
the equilibrium payoff set is self-generating, the continuation value of a PPE has to
remain within the set at all times. At the boundary, the law of motion given in (2)
thus places certain restrictions on admissible continuation promises; see Figure 6. In
this section, we illustrate that in the presence of abrupt information, these restrictions
depend on the equilibrium payoff set itself. Any attempt at describing the boundary
of the equilibrium payoff set via equilibrium incentives thus leads to a self-referential
description. This motivates the introduction of an iterative procedure over the arrival
times of infrequent events that will lead to an iterative construction of equilibrium
profiles as well as an approximation of the equilibrium payoff set.

To formalize the informational restrictions at the boundary, we introduce the
following notation. For a convex set W and any payoff pair w ∈ ∂W , denote by
Nw(W) :=

{
N ∈ S1

∣∣ N>(w − v) ≥ 0 for all v ∈ W
}

the set of all outer-pointing nor-
mal vectors to ∂W at w, where the unit circle S1 is the set of all directions. If the
boundary is continuously differentiable at w, the normal vector is unique and we
denote it by Nw. The restrictions on the continuation promise (β, δ) used to provide
incentives at the boundary of a self-generating set W are the following:

(i) Inward-pointing drift: N>
(
g(a) + δλ(a)− w

)
≥ 0 for any N ∈ Nw(W),

(ii) Tangential volatility: N>β = 0 for any N ∈ Nw(W),

(iii) Jumps within the set: w + rδ(y) ∈ W for every y ∈ Y .

Sannikov [20] shows that when information is Brownian, only local information about
the boundary is necessary to describe the equilibrium payoff set. Crucial in this re-
gard is that Brownian information arrives continuously, i.e., only the informational
restrictions (i) and (ii) are observed. These restrictions depend on the geometry of
the equilibrium payoff set only through the normal vector Nw at w, which gives rise
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Wt

NWt

g(At) + δtλ(At)

drift rβt
(
dZt − µ(At) dt

)
∂E(r)

dWt

Wt + rδt(y)

Figure 6: Because E(r) is self-generating, the continuation value W of a PPE can never escape the
set E(r). At the boundary ∂E(r), the drift rate r

(
Wt−g(At)−δtλ(At)

)
dt thus has to point towards

the interior of the set. Moreover, the diffusion rβt
(
dZt − µ(At) dt

)
has to be tangential to ∂E(r)

as the continuation value would escape E(r) otherwise due to the unbounded variation of Brownian
motion. Finally, an event of type y ∈ Y incurs a jump in the continuation value of size rδt(y). Since
W cannot jump outside of E(r), it is necessary that W + rδ(y) ∈ E(r) for every y ∈ Y .5

to an explicit description of the boundary through an ordinary differential equation
in the state (w,Nw). When information arrives discontinuously as well, such a lo-
cal description is no longer possible as the third informational restriction is a global
restriction involving the precise shape of the equilibrium payoff set. A local descrip-
tion of E(r) using restrictions (i)–(iii) thus involves E(r) itself, creating a non-trivial
fixed-point problem. We solve it with an iteration over the arrival times of infrequent
events, where restriction (iii) is relaxed to the jumps landing in a fixed payoff set W .

Definition 5.1. Let σn denote the occurrence of the nth infrequent event.

(i) We say that a payoff set X is W-relaxed self-generating for a payoff set W if
for every w ∈ X , there exists a solution W to (2) for processes A, β, δ, and M
such that (β, δ) enforces A, W0 = w a.s., Wτ ∈ X a.s. for every stopping time
τ < σ1, and Wσ1 ∈ W a.s.

(ii) For a convex and compact setW ⊆ R2, let Br(W) denote the largestW-relaxed
self-generating set. Observe that this is well defined since the convex hull of
two W-relaxed self-generating sets is again W-relaxed self-generating.

Any payoff pair in aW-relaxed self-generating payoff set X can be attained by an
enforceable strategy profile whose continuation value remains in X until the arrival of
the first infrequent event, at which point the continuation value jumps to W . At the
boundary of X , players must play an action profile such that the continuation value

4Jump times of Poisson processes are totally inaccessible, which means that players have abso-
lutely no way of anticipating a discrete event—the information is truly abrupt. It is thus necessary
that W +rδ(y) ∈ E(r) holds P ⊗Lebesgue-a.e. to ensure that punishments/rewards upon the arrival
of an event are consistent with equilibrium behavior.

16



has inward-pointing drift, tangential volatility, and jumps that land in W . Because
the incentives provided through the abrupt information do not depend on X , the set of
admissible incentives at the boundary depends on X only through local information,
which makes a description of the boundary via incentives possible.

The operator Br is a continuous-time analogue to the standard set operator in
Abreu, Pearce and Stacchetti [3]. Payoff pairs in Br(W) can be attained by an
enforceable strategy profile with continuation promise at time σ1 that lies in W . If
W ⊆ Br(W), then the payoff pair Wσ1 can be attained by an enforceable strategy
profile until the arrival of the next event and so on. The following lemma characterizes
the relation between the operator Br and self-generation.

Lemma 5.2. LetW ⊆ V. IfW is self-generating, thenW ⊆ Br(W). IfW ⊆ Br(W),
then Br(W) is self-generating.

An n-fold application of Br to a set W thus ensures that the continuation value
after the first n events is inW . Because Poisson processes have only countably many
jumps, taking the limit as n goes to infinity covers all events. We thus obtain the
following algorithm to compute E(r) iteratively.

Proposition 5.3. Let W0 = V∗ and Wn = B(Wn−1) for n ≥ 1. Then (Wn)n≥0 is
decreasing in the set-inclusion sense with

⋂
n≥0Wn = E(r).

This algorithm is similar to the algorithm in Abreu, Pearce and Stacchetti [3].
However, unlike its discrete-time counterpart, we show in the next section that the
boundary of the resulting set at each step of the iteration admits a characterization
by a differential equation. This is possible because in each step, the restriction on the
use of abrupt information is fixed. The algorithm in Proposition 5.3 thus provides an
alternative to the discrete-time implementation by Judd, Yeltekin, and Conklin [14].

6 Characterization of equilibrium payoffs

In this section we show how the iterative procedure from the previous section is used
to construct equilibrium profiles. The basic idea is to construct enforceable solutions
to (2) subject to the informational restrictions (i)–(iii). Due to Proposition 5.3 it
is sufficient to do so up until the arrival of the first infrequent event, i.e., we will
construct equilibrium profiles attaining payoff pairs in Br(W) for some fixed convex
payoff set W . Because the boundary is a priori unknown, we abstract away from
informational restrictions (i)–(iii) with the following definition.

Definition 6.1. For a payoff pair w ∈ R2, a direction N ∈ S1, discount rate r > 0,
and a payoff set W , we say that a continuation promise (β, δ) from the set

Ξa(w,N, r,W) :=

{
(β, δ)

∣∣∣∣∣ (β, δ) enforces a,N>
(
g(a) + δλ(a)− w

)
≥ 0,

N>β = 0, and w + rδ(y) ∈ W for every y ∈ Y

}
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restricted-enforces a. An action profile a ∈ A is restricted-enforceable for (w,N, r,W)
if the set Ξa(w,N, r,W) all such continuation promises is non-empty.

In the following two subsections, we will construct restricted-enforceable strategy
profiles whose continuation values locally remain either constant or on a continuously
differentiable curve. These two techniques will serve as building blocks to construct
enforceable strategy profiles attaining payoff pairs on the boundary of Br(W).

6.1 Stationary payoffs

The simplest W-relaxed self-generating payoff sets consist of only a single payoff
pair w. These payoff pairs are attainable by a strategy profile whose continuation
value remains in w until an infrequent event occurs. We call such a payoff pair
W-stationary. It is convenient to work with the following more elementary but
equivalent definition of stationary payoffs.

Definition 6.2. A payoff pair w is W-stationary if there exist a and δ0 such that
(0, δ0) enforces a, w = g(a) + δ0λ(a), and w + rδ0(y) ∈ W for every y ∈ Y .

We denote by Sr(W) the set of all W-stationary payoffs. Observe that any Nash
payoff pair in W is W-stationary for δ0 = 0, i.e., VN ∩ W ⊆ Sr(W). The set of
stationary payoffs is contained in Br(W) as formalized by the following lemma.

Lemma 6.3. Sr(W) ⊆ Br(W).

Proof. Because the union of two W-relaxed self-generating sets is again W-relaxed
self-generating, it is sufficient to show that {w} is W-relaxed self-generating for an
arbitrary stationary payoff pair w. By definition, there exist a, δ0 such that (0, δ0)
enforces a, w = g(a) + δ0λ(a), and w + rδ0(y) ∈ W for every y ∈ Y . The constant
strategy profile A ≡ a is thus enforced by the continuation promise (β, δ) with β ≡ 0
and δ ≡ δ0. A solution W to (2) starting in w with M ≡ 0 and A, β, δ as given
thus has neither drift nor diffusion term. It follows that W remains in w until the
arrival time σ1 of the first event y, at which point W jumps to the payoff setW since
Wσ = Wσ− + rδσ−(y) = w + rδ0(y) ∈ W .

6.2 Restricted-enforceable strategy profiles on curves

The construction of restricted-enforceable strategy profiles, whose continuation value
remains on a curve, requires players to continuously adjust the tangential transfers
provided by the continuous information. For players to be able to do so, the set
of directions, in which an action profile is restricted-enforceable, has to be closed.
We show in the appendix that if an action profile a is restricted-enforceable along a
convergent sequence of directions (Nn)n≥0, then a is also restricted-enforceable along
the limiting direction limn→∞Nn unless the limiting direction is a coordinate direction
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in {±e1,±e2}. To ensure that this property holds true also for coordinate limiting
directions, we impose Assumption 2 below.

For any action profile a ∈ A, let Ψi
a denote the set of δi ∈ Rm, for which contin-

uation promise (0, δi) provides sufficient incentives to player i to support play of a,
i.e., (0, δi) is a solution to (3) for player i. We make the following non-empty inte-
riority assumption, stating that if the discontinuous component of the public signal
is sufficient to incentivize player i to play ai, given a−i, then player i can be strictly
incentivized to play ai, given a−i, using only the discontinuous information. Observe
that the assumption is satisfied for generic choices of g and λ.

Assumption 2. Suppose Ψi
a for i = 1, 2 has non-empty interior for any a ∈ A.

Remark 6.1. Assumption 2 is a generalization of Assumption 2.(i) in Sannikov [20]
as it reduces to a unique best response assumption when Y = ∅. Note however, that
we do not require action profiles to be pairwise identifiable. We are able to relax
this condition despite our general framework by analyzing continuity properties of
incentives that are “optimal” on the boundary; see Appendices B and E.2 for details.

Without pairwise identifiability, action profiles may be restricted-enforceable in
some directions but not in others. For payoff pairs and directions, at which they are
restricted-enforceable with non-zero tangential transfers, enforceable strategy profiles
on curves can be constructed with the following lemma.

Lemma 6.4. Suppose that Assumptions 1 and 2 hold. Let C be a continuously dif-
ferentiable curve oriented by the Gauss map w 7→ Nw such that:

(i) There exist measurable selectors a∗, δ∗, and β∗ on C such that the selections
satisfy β∗(w) 6= 0 and

(
β∗(w), δ∗(w)

)
∈ Ξa∗(w)

(
w,Nw, r,W) for any w ∈ C and

the curvature at any point w ∈ C is given by

κ(w) =
2Nw

>(g(a∗(w)
)

+ δ∗(w)λ
(
a∗(w)

)
− w

)
r‖β∗(w)‖2 . (4)

(ii) C is a closed curve or both of its endpoints are contained in Br(W).

Then C ⊆ Br(W) and the solution W to (2) with A = a∗(W ), δ = δ∗(W−), β = β∗(W ),
and M ≡ 0 remains on C until an endpoint of C is reached or an event occurs.

The above lemma enables us to construct enforceable strategy profiles that remain
on a curve with curvature (4). While the presence of abrupt information creates
many technical challenges that we address in Appendices B and C, the intuition
behind Lemma 6.4 is similar to Sannikov [20] because the diffusion term is the main
driver behind Lemma 6.4. The strategy profile constructed in Lemma 6.4 and its
continuation promises are Markovian in the continuation value. At any point w on
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w

g(At) + δtλ(At)

C
rβt
(
dZt − µ(At) dt

)
r2

2
κ(w)‖βt‖2 dt

Figure 7: Incentives related to the continuous component of the public signal lead to tangential
volatility of the continuation value. Because Brownian motion has unbounded variation, the tan-
gential volatility leads to a second-order outward drift. At points where the curvature is larger, the
tangential volatility leads to a stronger outward drift. For continuation promise (β, δ) in Lemma 6.4,
this outward drift is precisely counteracted by the inward drift rNw

>(w − g(At)− δtλ(At)
)

so that
the continuation value remains on C until an end point is reached or an infrequent event occurs.

the curve, incentives provided through the continuous component of the public signal
are parallel to the curve. Because of the infinitesimally fast oscillation of Brownian
motion, the tangential volatility leads to an outward-pointing drift; see Figure 7. It
follows form Itō’s formula that the outward drift is proportional to the curvature
and the square of the tangential incentives. For the constructed strategy profile, this
outward drift is precisely counteracted by the inward-pointing drift so that at w,

r2

2
κ(w)‖βt‖2 = −rNw

>(w − g(At)− δtλ(At)
)

and the continuation value remains on the curve C. Because δ is chosen such that
W + rδ(y) ∈ W almost everywhere, it is guaranteed that the continuation value
jumps toW after the occurrence of any event y ∈ Y . This construction of enforceable
strategy profiles will be used several times in the characterization of ∂Br(W).

6.3 Decomposition of extremal payoff pairs

Consider a payoff set, whose boundary consists of only stationary payoff pairs and
solutions to (4) for some fixed set W . Then any payoff pair on the boundary is
attainable by an enforceable strategy profile, whose continuation value remains on
the boundary until an infrequent event occurs and jumps to W at the time of the
first event. Such a payoff set is thus contained in Br(W) by maximality of Br(W).
One may thus wonder whether the boundary of Br(W) consists only of stationary
payoff pairs and solutions to (4). Unfortunately the answer is negative in general.
There may be payoff pairs on the boundary that are neither stationary nor require
the continuous information to provide incentives.

Definition 6.5. A payoff pair w ∈ ∂Br(W) is calledW-decomposable if there exist a
and δ such that (0, δ) ∈ Ξa(w,N, r,W) for all outward normal vectors Nw

(
Br(W)

)
.

We say that such a pair (a, δ) decomposes w.
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Remark 6.2. This is similar to the one-period decomposition of payoffs in Fudenberg,
Levine, and Maskin [10], where a payoff vector on the boundary of the equilibrium
payoff set is decomposed into a current-period payoff vector outside the set and a
continuation value within the set. This is not surprising because a continuous-time
game with abrupt information only can be mapped to a discrete-time game with time
periods of random length. Time period n lasts from the occurrence of the n − 1st

event to the occurrence of the nth event. At the end of period n, the signal Yn is
equal to y if and only if the nth event is of type y. However, while the techniques
related to abrupt information are often similar to those used in discrete time, they are
not identical because of the crucial difference that the interarrival times between two
abrupt events are unbounded. Because players do not know when they will receive
new information, incentives cannot be adjusted dynamically.

We denote by Dr(W) the set of all W-decomposable payoff pairs. Referring back
to the definition of Ξa in Definition 6.1, we note that the defining characteristics of a
W-decomposable payoff pair are the following: incentives are provided through the
abrupt information only such that the drift rate points towards the interior of Br(W)
and the continuation payoff after the occurrence of an event is in W . The following
lemma establishes that at most one of these defining conditions holds strictly.

Lemma 6.6. Suppose that Assumptions 1 and 2 are satisfied and that W has non-
empty interior. For any W-decomposable payoff pair w, it is impossible that there
exists (a, δ) such that two of the following conditions hold simultaneously:

(i) (0, δ) strictly enforces a,

(ii) N>
(
g(a) + δλ(a)− w

)
> 0 for some outward normal N ∈ Nw

(
Br(W)

)
,

(iii) w + rδ(y) ∈ intW for every y ∈ Y .

Proof. Suppose that there exists such a pair (a, δ). Since W and Ψa have non-empty
interior, there exists δ′ sufficiently close to δ such that all three conditions (i)–(iii) hold
simultaneously. Since the conditions are strict, they all hold for v and N ′ sufficiently
close to w and N . Because of condition (i), there exists φ ∈ Rd sufficiently small such
that (Tφ, δ′) enforces a for any direction T ∈ S1. Let Cw0,φ be a solution to (4) with
initial value (w0, N) and selectors a∗(w) = a, δ∗(w) = δ′, and β∗ = Tvφ, where Tv is
the tangent vector to Cw0,φ at a point v. Because of conditions (ii) and (iii), choosing
w0 6∈ clBr(W) sufficiently close to w and choosing ‖φ‖ sufficiently small guarantees
that C enters the interior of Br(W) on both sides of w0 as illustrated in the left panel
of Figure 8. Lemma 6.4 thus shows that w0 ∈ Br(W), a contradiction.

A consequence to Lemma 6.6 is that corners are either stationary or that incentives
are binding for at least one player i such that w+ rδ(y) ∈ ∂W for some event y ∈ Y .
Indeed, if condition (ii) of Lemma 6.6 is violated and N>

(
g(a) + δλ(a) − w

)
= 0
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Figure 8: The left panel illustrates that it is not possible that two constraints of Lemma 6.6 are
satsfied at w ∈ Dr(W) simultaneously. Otherwise w0 outside of Br(W) could be attained by an
enforceable strategy profile that remains on a curve C that reaches the interior of Br(W), showing
that w0 ∈ Br(W) by Lemma 6.4, a contradiction. Similarly, a curve with curvature in (5) cannot
intersect ∂Br(W) outside of Dr(W) as depicted in the right panel.

for all outward normal vectors N to ∂Br(W) at a corner w, then w = g(a) + δλ(a)
and hence w is stationary. If condition (ii) is satisfied, incentives have to be binding
and w + rδ(y) ∈ ∂W for at least one y ∈ Y . Therefore, there must exist an action
profile a such that the corner lies on the boundary of the set

Kr,a(W) := {w | ∃δ ∈ Ψa with w + rδ(y) ∈ W for every y ∈ Y }.

Corners of Dr(W) \ Sr(W) are thus contained in the set Kr(W) = ∂
⋃
a∈AKr,a(W).6

A perturbation argument in Appendix C shows that this is, in fact, true for all
extremal payoff pairs in Dr(W).

Proposition 6.7. Suppose that Assumptions 1 and 2 are satisfied. Any payoff pair
w ∈ extDr(W)\Sr(W) is decomposable by an action profile a such that w ∈ ∂Kr,a(W)
and Nw

(
Br(W)

)
⊆ Nw

(
Kr,a(W)

)
.

The key restriction of the characterization of decomposable payoff pairs in Propo-
sition 6.7 is the restriction on outward normal vectors. It implies that every corner in
Dr(W) \Sr(W) is a corner of Kr,a(W) for some action profile a and any line segment
in Dr(W) \ Sr(W) with a strictly positive curvature also lies on ∂Kr,a(W) for some
action profile a. The fact that corners are either stationary payoffs or that incentives
have to be binding at corners is similar in spirit to Abreu and Sannikov [4], who find
an improvement on the algorithm in Judd, Yeltekin, and Conklin [14] for two-player
games with perfect monitoring. They find that extremal points in the discrete-time
analogue of Br(W) are attainable either by a stationary strategy profile, or by a
current-period action profile with binding incentives.

6Observe that ∂Kr,a(W) is reasonably nice since Kr,a is convex: for any w0, w1 ∈ Kr,a(W), there
exist (δ0, δ1) with wk + rδk(y) ∈ W for every y ∈ Y and k = 1, 2. Define wγ := γw1 + (1− γ)w0 and
δγ := γδ1 + (1− γ)δ0 and observe that for every γ ∈ [0, 1], (0, δγ) enforces a and wγ + rδγ(y) ∈ W
for every y ∈ Y by convexity of Ψa and W, respectively.
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6.4 Characterization of E(r)

The following result is a complete characterization of Br(W), building on the previous
results in this section. The proof is contained in Appendices B–E.

Theorem 6.8. Suppose that Assumptions 1 and 2 hold and that W ⊆ V∗ is compact
and convex with non-empty interior. Then Br(W) is the largest closed convex subset
of V∗ such that extDr(W) ⊆ Sr(W) ∪ Kr(W) and ∂Br(W) \ Dr(W) is continuously
differentiable with curvature at almost every point w given by

κ(w) = max
a∈A

max
(β,δ)∈Ξa(w,r,Nw,W)

2Nw
>(g(a) + δλ(a)− w

)
r‖β‖2 , (5)

where we set κ(w) = 0 if the maxima are taken over empty sets.

The characterization of decomposable payoff pairs follows straight from Proposi-
tion 6.7. Outside of Dr(W), the curvature of the boundary is of the same form as in
Lemma 6.4, where the selectors correspond to the maximizers of the expression on
the right-hand side. The intuition behind this is the same as in Sannikov [20]: if the
curvature of ∂Br(W) at an extremal payoff pair w was smaller than the expression
in (5), then a solution to (5) starting at a payoff pair v slightly outside of Br(W)
would intersect ∂Br(W) and reach payoff pairs in the interior of Br(W); see the right
panel in Figure 8. This implies by Lemma 6.4 that v ∈ Br(W), which is a con-
tradiction. Note that this argument requires continuity of (4) in initial conditions,
which we establish in Appendix B. Similarly, the curvature of ∂Br(W) cannot be
larger than the maximum curvature in (5) because otherwise, there would exist no
restricted enforceable strategy profile that remains in Br(W), contradicting the fact
that Br(W) is W-relaxed self-generating. There are many details needed to make
this argument rigorous, which can be found in Appendices C and E.2.

Even though the curvature is characterized only at almost every point on the
boundary, a solution is unique with the additional requirement that it be continu-
ously differentiable. This implies that ∂Br(W) is twice continuously differentiable
almost everywhere, which is important for the numerical solution of (5) as numerical
procedures rely on discretizations. We will elaborate on the numerical implementa-
tion in Section 8. Since Br preserves compactness due to Theorem 6.8, it follows from
Proposition 5.3 that E(r) is compact. An application of Theorem 6.8 for W = E(r)
thus provides a fixed-point characterization of E(r) since Br

(
E(r)

)
= E(r).

7 Discussion

In this section, we discuss important insights that can be gained by our main results.
We also discuss in greater detail how our result relates to the literature. While some
of these points have already been highlighted in the example of Section 3, the tools
developed in Sections 4–6 help gaining some additional insights.
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Figure 9: The left panel shows the set of stationary equilibrium payoffs as a subset of the equilbrium
payoff set in the partnership example of Section 3. The two disconnected components correspond
to the stationary payoffs decomposed by the action profiles of mutual effort and mutual shirking,
respectively. The payoff pair w̃ can be attained by an unforgiving grim-trigger strategy profile.
Because the value burnt upon the arrival of a demand shock is about twice as large as in the
minimal equilibrium punishment, the payoff pair w̃ is about twice as far below the expected flow
payoff pair g(1, 1) as w∗. The right panel illustrates that the continuation value of any equilibrium
attaining wA enters the interior of the equilibrium payoff set with certainty due to the drift term.

7.1 Bang-bang property and pairwise identifiability

In the model of Sannikov [20], the continuation value of a PPE is absorbed on the
boundary of the equilibrium payoff set once the boundary is reached. This can be
interpreted as a continuous-time analogue to the bang-bang proprty of Abreu, Pearce,
and Stacchetti [3]. We have already highlighted in the example of Section 3 that
the bang-bang property does not hold when players observe finitely many discrete
types of events: the extremal payoff pair w∗ in the partnership game of Section 3 is
decomposed by the minimal value burning necessary to enforce mutual effort. For
γ > 1/3 this minimal punishment has a continuation value in the interior of the
equilibrium payoff set. Note that players cannot agree to use a larger punishment
and, say, revert to the static Nash equilibrium forever as this would destroy too much
value in expectation to attain w∗; see Figure 9. The fact that a permanent Nash
punishment is not consistent with equilibirium behavior at w∗ can also be observed
using our construction of equilibria: a solution to (2) with a Nash punishment would
have drift rate in the direction of w∗ − w̃, violating the inward-drift condition.

A possible explanation for the failure of the bang-bang property in the presence of
abrupt information is the fact that players observe only finitely many different types
of events in our model. The embedding of the abrupt information into a discrete-
time game as in Remark 6.2 thus generates a discrete-time game with a finite signal
space, for which a bang-bang property does not hold in discrete time either.7 More

7We emphasize that this is merely one possible explanation. The discrete-time embedding in
Remark 6.2 differs from the model in Abreu, Pearce, and Stacchetti [3] crucially in the fact that
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surprising is thus the fact that the bang-bang property may fail to hold even when
information is entirely Brownian but action profiles are not pairwise identifiable.

An action profile is said to be pairwise identifiable if deviations of any two play-
ers can be statistically distinguished by observing the public signal. For a pairwise
identifiable and enforceable action profile, sufficient incentives can be provided to
players by transferring value between each other along any non-coordinate tangent
(cf. Fudenberg, Levine, and Maskin [10]). If action profiles are not pairwise iden-
tifiable as in our setting, players cannot transfer value on any tangent but there
may be limiting directions along which the action profile can be enforced. In the
continuous-monitoring partnership game of Section 3 with γ = 0, this occurs at the
payoff pairs wA and wB; see the right panel of Figure 9. Lemma 6.4 establishes
that the continuation value of an equilibrium profile remains on the boundary of the
equilibrium payoff set where the boundary is curved. As highlighted in Figure 7, the
unbounded variation of the tangential transfers leads to an outward-pointing drift
proportional to the curvature that is precisely counteracted by the inward-pointing
drift from the extraction of expected flow payoffs. At wA and wB, where the curvature
becomes 0, there is no outward-pointing drift anymore and hence the continuation
value of any equilibrium enters the interior of E(r) with probability 1.

7.2 Public randomization

By giving players access to a public randomization device, the analysis is simplified for
two reasons. First, public randomization allows us to conclude early on that the equi-
librium payoff set is convex. Second, it is sufficient to verify that the “jumps within
the set” condition of equilibrium incentives holds at the boundary. Indeed, two events
of independent Poisson processes happen at the same time with probability 0. Thus,
if any event requires punishments/rewards with a continuation value in the interior
of the set, players can use public randomization before another event occurs such
that the continuation value after the randomization lies on the boundary again.

Despite the two important uses of public randomization in the derivation of our
result, there are many instances in which the equilibrium payoff set E(r) with public
randomization coincides with the equilibrium payoff set without public randomiza-
tion. This is the case, for example, if information arrives continuously. Clearly, E(r)
contains the equilibrium payoff set without public randomization. To see that the
two sets coincide, it is thus sufficient to show that any payoff pair in E(r) can be
attained by an equilibrium profile without public randomization. Indeed, in a game
without abrupt information, the continuation value in (2) is continuous, hence any

the lengths of time periods are random, hence the same result need not apply. Studying our model
for a continuum of possible types of events to verify whether a bang-bang property would hold is
a rather involved exercise: with a continuum of Poisson processes, an iterative construction over
arrival times does not work as there would be uncountably many jumps in the continuation value.
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payoff pair in the interior can be attained locally by playing any enforceable action
profile until the boundary is reached. Stationary payoff pairs on the boundary and
payoff pairs on the boundary, where the curvature is strictly positive, can be attained
locally by strategy profiles constructed in the proof of Lemma 6.3 and in Lemma 6.4,
respectively. Payoff pairs on the boundary, where the curvature is 0, can be attained
locally by using action profile and incentives form either end point of the straight
line segment: the transfers are tangential and the drift points towards the interior at
any point on the straight line segment as illustrated in the right panel of Figure 9.
The continuation value will thus enter the interior of the equilibrium payoff set with
certainty, hence a concatenation of these three local constructions will yield an en-
forceable strategy profile on [0,∞), which is an equilibrium profile by Lemma 4.3.

If players observe also abrupt information, the two payoff sets do not coincide in
general. It is, however, fairly simple to verify whether they do coincide for a given
equilibrium payoff set E(r) with public randomization. A sufficient condition for the
two sets to coincide are:

(i) There exists at least one action profile a0 that is enforceable without the use of
abrupt information, and

(ii) the boundary of E(r) does not have any straight line segments outside the set
of stationary payoffs.

If the two conditions are satisfied, then any payoff pair in the interior of E(r) can
be attained locally by playing a0 until the boundary is reached: by (i) no incentives
through the abrupt information are required, hence the continuation value is contin-
uous and does not jump past the boundary. By (ii), any extremal payoff pairs can be
attained locally with stationary strategy profiles or by strategy profiles constructed in
Lemma 6.4, which do not require public randomization. If the boundary of E(r) has
straight line segments, however, the above argument may break down: it is possible
that the equilibrium rewards/punishments at an end point of a straight line segment
do not remain in E(r) if translated along the line segment. Nevertheless, in the part-
nership game of Section 3 the two sets do coincide for any value of γ: any payoff pair
on the straight line segments can be attained by local play of the static Nash profile
until the extremal payoff pairs wA and wB are reached; see, for example, Figure 5.

7.3 Relation to Sannikov and Skrzypacz [22]

Because of the similarity of our model with Sannikov and Skrzypacz [22], it is a natu-
ral question to ask how the results of the two papers relate. In their paper, Sannikov
and Skrzypacz establish a payoff bound for discrete-time games with a sufficiently
short time period. They apply the techniques from Abreu, Pearce, and Stacchetti [3]
together with the informational restrictions from the continuous-time limiting game
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to describe a linear program that results in an equilibrium payoff bound M . Since
the same restrictions on the use of information apply to our model, M is also an
upper bound for the equilibrium payoff set in our model.8 Note, however, that the
algorithm in Proposition 5.3 cannot be started with M as it is unknown whether
or not Br(M) is contained in M and whether the induced sequence is decreasing.

This paper moves beyond the payoff bound and gives a way to compute E(r) for
any value of the discount rate r. The precise shape is characterized by the tradeoff
among the two types of information. It is also worth noting that the payoff bound M
may be significantly larger than the equilibrium payoff set for discount rates that are
bounded away from 0: in the partnership example of Section 3, our methods indicate
that the equilibrium payoff set collapses below the negative diagonal D (as illustrated
in Figure 3) if and only if r ≤ 15γ, i.e., when the abrupt information is not sufficiently
informative relative to the players’ patience. The payoff bound Mγ of [22], however,
extends beyond the negative diagonal D for any γ > 0. Finally, as we have already
noted in Section 3, the techniques in this paper allow us to elicit the equilibirum
strategies that attain payoff pairs on the efficient frontier of the equilibrium payoff
set, which is not possible in a discrete-time setting of this generality.

8 Computation

In this section, we illustrate how to implement Theorem 6.8 numerically. We illustrate
the convergence of an iterated application of Br to the equilibrium payoff set with
the partnership game of Section 3. Finally, Section 8.3 provides an improvement on
the algorithm in Proposition 5.3 for numerical implementation.

8.1 Computing Br(W) for arbitrary sets W

The general procedure for computing Br(W) is the following: compute the set Sr(W)
of stationary payoffs and then find the largest solution to the ODE (5) that contains
Sr(W), where we check for non-stationary payoff pairs in Dr(W) “on the fly”. In-
deed, non-stationary payoff pairs in Dr(W) are precisely the payoff pairs where the
expression in (5) is unbounded for some action profile a. Outside the set of stationary
payoffs, the boundary of Br(W) can thus be viewed as an extended solution to (5),
which follows ∂Kr,a(W) if the expression in (5) is unbounded for some action profile a.

We begin by illustrating how to compute the set of stationary payoff pairs. A
stationary payoff pair w can be written as w = g(a) + δλ(a) for some a ∈ A and δ ∈
Ψa, where we denote Ψa = Ψ1

a×Ψ2
a. The condition that the continuation value after

an event y comes from the set W can thus be expressed as g(a) + fy(δ) ∈ W , where

8This follows from the fact that E(r) is closed by Corollary 8.2. Any payoff pair on the boundary
can thus be attained in equilibrium, which implies that the informational restrictions in their paper
are satisfied. Therefore, the boundary and hence the equilibrium payoff set are contained in M .
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fy(δ) = δ
(
λ(a) + rey

)
. This eliminates the variable w and allows us to parametrize

the set of stationary payoffs via incentives δ. Such incentives have to come from Ψa

and they have to satisfy the jump condition for every y ∈ Y , i.e., the set of all such
incentives is given by Xa(W) := Ψa ∩

⋂
y∈Y f

−1
y

(
W − g(a)

)
, where f−1

y denotes the
inverse image under fy and we denote by W ± g(a) the translate of W by ±g(a). It
is now straightforward that

Sr(W) =
⋃
a∈A

(
g(a) + Xa(W)λ(a)

)
, (6)

where Xa(W)λ(a) := {w ∈ R2 | ∃δ ∈ Xa(W) with δλ(a) = w} denotes the projection
onto R2 in the direction λ(a). Note that Ψa is a convex polytope characterized by
the affine inequalities in (3). For a discretization W ′ of W with extremal points
x1, . . . , xn and corresponding normal vectors N1, . . . , Nn, the set Xa(W ′) is a convex
polytope again, characterized by the affine inequalities in (3) and

Nj
>(δ(λ(a) + rey)

)
≤ Nj

>xj, j = 1, . . . , n, y ∈ Y.

One can thus compute extremal points z1, . . . , zn of the set Xa(W ′)λ(a) by maximizing
Nj
>δλ(a) for j = 1, . . . , n over δ ∈ Xa(W ′). This is an efficient numerical procedure

as it maximizes a linear function under a set of affine constrains. The computation
is particularly simple if there is only one type y of events as then

Xa(W)λ(a) =

(
Ψa ∩

W − g(a)

λ(a) + r

)
λ(a).

The set g(a) +Xa(W)λ(a) is the set of all stationary payoff pairs that are attainable
locally by play of a. Equation (6) thus shows that Sr(W) consists of up to |A| disjoint
components. Figures 9 and 10 show the two components of S5

(
E0.8(5)

)
and S5(V∗)

in the partnership game of Section 3 for γ = 0.8 and γ = 0.4, respectively.
It remains to find the largest solution to (5) that contains the set of stationary

payoffs. In principle, this is achieved similarly as in Sannikov [20], but we additionally
need to account for straight line segments and non-stationary payoff pairs in Dr(W).
Since Br(W) is convex, we parametrize the boundary via tangential angle θ. Let w(θ)

denote the set of payoff pairs in Br(W) with normal vector N(θ) =
(
cos(θ), sin(θ)

)>
.

Note that w(θ) is unique where the curvature of ∂Br(W) is strictly positive, hence
one can solve

dw(θ)

dθ
=
T (θ)

κ(θ)
(7)

numerically, where T (θ) =
(
− sin(θ), cos(θ)

)>
and κ(θ) = κ

(
w(θ)

)
is given by the

optimality equation (5). If the maximization in (5) is unbounded for some action
profile a, we check whether w(θ) ∈ ∂Kr,a(W) and N(θ) ∈ Nw(θ)

(
Kr,a(W)

)
. If this is
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Figure 10: The left panel shows S5(V∗) in the partnership game of Section 3 for γ = 0.4. The
smaller component is decomposed using the action profile of mutual effort by attaching mutual pun-
ishments to demand shocks. The larger component is decomposed using the static Nash profile by re-
warding players when a demand shock occurs. Even though these incentives are not necessary to sup-
port the static Nash profile, they are allowed for the decomposition of payoffs. The right panel shows
K5,a(V∗) for action profiles a = (0, 1), (1, 0) and (1, 1). A non-stationary corner w ∈ B5(V∗) \ S5(V∗)
is a corner of K5,a(V∗) by Proposition 6.7, where w is decomposable by a. The only such candi-
date wC , however, is in the interior of convS5(V∗). Therefore wC , cannot be a corner of B5(V∗).

the case, it is possible that the solution has reached a corner or a segment of positive
length in Dr(W) \ Sr(W). Because Br(W) is the largest solution to (5), we search
for the maximal angle at corners and the longest segments in ∂Kr,a(W), respectively,
for which a closed solution to (5) exists. If the maximization in (5) is taken over
empty sets at some point w(θ), it is possible that ∂Br(W) has a straight line segment
outside of Dr(W). Again, we search for the longest straight line segments orthogonal
to N(θ), for which a closed solution to (5) exists.

We illustrate this procedure by computing Br(V∗) in the partnership example of
Section 3 for γ = 0.4. We first compute the set of stationary payoffs as illustrated
in the left panel of Figure 10. Since Sr(V∗) overlaps with ∂V∗, it is necessary that
Sr(V∗) ∩ ∂V∗ lies on the boundary of Br(V∗). Therefore, payoff pairs wA and wB
in Figure 10 thus serve as starting points for solving (5). We thus search for the
maximal angle at wA, for which a solution connects to either wB or w∗. The largest
such solution yields ∂Br(V∗), which is depicted as the outermost curve in the left
panel of Figure 11. If the intersection Sr(W) ∩ ∂V∗ was empty instead, starting
points of symmetric games may be found by searching over the positive diagonal
with initial angles π/4 or 5π/4. If the game is asymmetric, one may use an iterative
procedure as in Section 8 of Sannikov [20].

In this game, there are no corners outside the set of stationary payoffs as the solu-
tion to (2) is bounded everywhere. This is illustrated in the right panel of Figure 10,
which shows Kr,a(V∗) for the different action profiles a ∈ A. By Proposition 6.7,
the boundary of Br(V∗) may have corners outside the set of stationary payoffs only
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Figure 11: The left panel shows the convergence of the algorithm in Proposition 5.3. The right
panel shows the convergence of the algorithm in Proposition 8.4, where outward jumps are excluded.

at corners of Kr,a(V∗). The point wC is the only such candidate, but it lies in the
interior of the convex hull of stationary payoffs, hence also in the interior of Br(V∗).
We conclude that all corners of Br(V∗) are stationary.

8.2 Computing the equilibrium payoff set

The equilibrium payoff set can be computed with the algorithm in Proposition 5.3.
The sequence (Wn)n≥0 defined byWn = Br(Wn−1) for any n > 0 starting atW0 = V∗
is computed iteratively as described in Section 8.1. We stop the approxmation if the
difference between two consecutive sets Wn and Wn−1 is sufficiently small. The left
panel of Figure 11 illustrates the convergence to E0.4(5) in the partnership game.
Observe that the set of stationary payoffs shrinks with every iteration: extremal
payoff pairs in Sr(Wn) ∩ ∂V∗ are not contained in the next step of the iteration if
they are decomposed using outward jumps. Consider the payoff pair wA ∈ S5(V∗)
in Figure 10 as an example, which is decomposed using the static Nash profile and
incentives that give player 2 his highest feasible and individually rational payoff upon
the arrival of a demand shock. In the limit as Br is applied infinitely often, incentives
using outward jumps cannot be efficient to support equilibrium behavior since E(r)
is convex. This motivates the definition of a refined algorithm that excludes the use
of such incentives from the beginning.

8.3 Refinement of the algorithm for E(r)

We begin by defining the set of payoff pairs that can be decomposed using inward
jumps. Similarly to the definition of restricted-enforceability, such a definition should
not depend on the a priori unknown set Br(W). For any action profile a ∈ A and
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any direction N ∈ S1, let

Ha(N) :=

{
w ∈ R2

∣∣∣∣∣ ∃ δ ∈ Ψa with N>δ(y) ≤ 0 for every y ∈ Y
and N>

(
g(a) + δλ(a)− w

)
≥ 0

}
.

be the half-space of payoff pairs that can be decomposed with inward-jumps with
respect to the direction N . Observe that Ha(N) cannot extend past g(a), i.e., g(a)
is either on the boundary or outside of Ha(N). Let Da := {N ∈ S1 | Ha(N) 6= ∅}
denote the set of directions, with respect to which a can be decomposed using inward
jumps only. The set

Qa :=
⋂

N∈Da

Ha(N).

is a bound for all payoff pairs that are decomposable by a using only inward-pointing
jumps. Since a static Nash profile a ∈ AN is decomposable without any jumps at all,
g(a) ∈ ∂Ha(N) for all N ∈ S1 and hence Qa = {g(a)}. The following lemma follows
immediately from the definition ofQa, stating that any payoff pair w ∈ Dr(W) that is
decomposed by a is either contained in Qa or requires outward jumps to be enforced.

Lemma 8.1. Let w ∈ Dr(W) be decomposable by a ∈ A. Then either w ∈ Qa or
any δ with (a, δ) decomposing w satisfies N>δ(y) > 0 for some y ∈ Y and some
N ∈ Nw

(
Br(W)

)
.

While outward jumps may be necessary to decompose payoff pairs in Dr(W), for
an arbitrary setW , outward jumps cannot support equilibrium behavior because E(r)
is convex. Therefore, we obtain the following fixed-point characterization of E(r) as
a consequence to Proposition 5.3, Theorem 6.8, and Lemma 8.1.

Corollary 8.2. Under Assumptions 1 and 2, E(r) is the largest closed subset of V∗
such that Dr

(
E(r)

)
⊆
⋃
a∈A
(
Sr(E(r)) ∪ ∂Kr,a

(
E(r)

))
∩ Qa and ∂E(r) \ Dr

(
E(r)

)
is

continuously differentiable with curvature at almost every point w given by

κ(w) = max
a∈A

max
(β,δ)∈Ξa(w,r,Nw,E(r))

2Nw
>(g(a) + δλ(a)− w

)
r‖β‖2 , (8)

where we set κ(w) = 0 if the maxima are taken over empty sets.

At a first glance, it may seem that the characterization has become more difficult
with the exclusion of outward jumps. This is only a notational difficulty. The refine-
ment allows us to exclude many points that would have to be considered as potential
corners and extremal points in Dr

(
E(r)

)
. The following algorithm clarifies that we

can excludes all of these points straight from the beginning, leading to a faster com-
putation of E(r) through a refinement of the operator Br. Figure 11 illustrates that
the sequence of approximating payoff sets converges much faster.
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Definition 8.3. For a compact and convex set W ⊆ V∗ with non-empty interior, let
B̃r(W) denote the largest closed subset of V∗ such that

(i) its boundary is a solution to (5) at all points that are not decomposable, and

(ii) all points on the boundary that are decomposable by some a ∈ A are contained
in the set

(
Sr(W) ∪ ∂Kr,a(W)

)
∩Qa.

Proposition 8.4. Let W0 = V∗ and Wn := B̃r(Wn−1) for n ≥ 1. Then (Wn)n≥0 is
decreasing in the set-inclusion sense with

⋂
n≥0Wn = E(r).

9 Conclusion

This paper characterizes the equilibrium payoff set for a class of continuous-time
two-player games with imperfect public observation, where information may arrive
both continuously through the observation of a noisy signal and discontinuously
(abruptly) as the occurrences of infrequent but informative events. The presence
of abrupt information allows the use of equilibrium incentives through value burn-
ing. This additional way of providing incentives has a drastic impact on the set of
equilibrium strategies and the attainable payoff pairs. Stationary payoff pairs can be
attained locally through strategies that disregard the continuous stream of informa-
tion completely. At these payoff pairs, the equilibrium payoff set may have corners
and straight line segments outside the set of static Nash payoffs, which is precluded in
models without abrupt information. The characterization of the equilibrium payoff
set is new even when the signal is continuous but fails the widely assumed pairwise
identifiability condition. Our methods thus allow the computation of the equilibrium
payoff set in games where the signal is one-dimensional such as a partnership game
or a duopoly in a single homogeneous good.

The hallmark of continuous-time repeated games with imperfect monitoring is
the ability to describe the equilibrium payoff set via an ODE of its boundary that
involves the unique equilibrium incentives at each point. In models with abrupt
information, any such description is self-referential because the amount of value that
can be burnt at each point depends on the equilibrium payoff set itself. We show
that the equilibrium payoff set can be computed with an iterative procedure over
the arrival times of abrupt information. In each step of the algorithm, one computes
the largest payoff set that is relaxed self-generating with respect to the set from
the previous step. Doing so eliminates any self-referentiality and hence each set of
the algorithm is described by an explicit ODE. The notion of largest relaxed self-
generating payoff set is the continuous-time analogue to the standard set-operator
in Abreu, Pearce and Stacchetti [3]. Our iterative procedure thus resembles the
algorithm in [3]. However, unlike its discrete-time analogue, the set in each step is
computed efficiently as the numerical solution to an ODE.
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The concept of relaxed self-generating payoff sets is an important methodological
contribution as it will be useful in subsequent research on continuous-time games that
involve discontinuous information, such as stochastic games with a finite state space.
Indeed, finite-state Markov processes in continuous time are precisely described by
a set of Poisson processes, whose intensities govern the rate at which the underly-
ing state changes. The study of continuous-time stochastic games may provide new
insights that are not available in discrete time. In their discrete-time treatment of
stochastic games, Hörner et al. [13] assume that the underlying Markov process is ir-
reducible so that the distribution over states converges to the stationary distribution.
As a result, the payoff bound as players get arbitrarily patient becomes independent
of the initial state, making the analysis tractable. In contrast, the techniques in this
paper do not require that players become arbitrarily patient. It seems, therefore,
plausible that one could describe the correspondence x 7→ Ex(r) for initial states x
as a set of coupled differential equations. This would allow us to investigate richer
sets of questions that involve the equilibrium payoff impact of the underlying state
such as, for example, contestable democracies, where players can pay to influence the
current state. Moreover, if convergence to a stationary distribution is not required
to obtain the result, the analysis would not be limited to games in which the under-
lying Markov process is irreducible, thereby extending the analysis to a wider class
of stochastic games than is currently possible in a discrete-time setting.

Because of the quantitative nature of the result, the impact of information on
equilibrium payoffs can be measured precisely, paving the way for future research
on information revelation: a company may choose to publicly disclose certain infor-
mation (make it continuously observable) or keep the information from the public
until the media finds out and reports on it (abrupt information). Because continuous
and discontinuous information have fundamentally different impacts on equilibrium
payoffs, a strategic company may prefer one over the other and act accordingly.

A Proofs of auxiliary results in the main text

A.1 Dynamics of the continuation value and continuation promises

For the proofs of Lemmas 4.1 and 4.3, we draw from the arguments in Bernard and
Frei [7]. In the interest of space we present in this subsection only the additional
arguments required due to abrupt information.

Proof of Lemma 4.1. This proof mirrors the proof of Lemma 1 in Bernard and Frei [7],
with the following additional arguments for the jump processes. Because (Jy)y∈Y are
pairwise orthogonal and orthogonal to Z, the stable subspace generated by Z and
(Jy)y∈Y is the space of all stochastic integrals with respect to these processes (The-
orem IV.36 in Protter [19]). Therefore, we obtain the unique martingale represen-
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tation property for a square-integrable martingale by Corollary 1 to Theorem IV.37
in [19]. That is, for a bounded FT -measurable random variable wiT , there exists an
F0-measurable ciT , predictable processes

(
βit,T
)

0≤t≤T ,
(
δit,T (y)

)
0≤t≤T for all y ∈ Y with

EQA
T

[∫ T
0
βit,T dt

]
< ∞ and EQA

T

[∫ T
0

∣∣δit,T (y)
∣∣2λ(y |At) dt

]
< ∞ and a QA

T -martingale

M i orthogonal to Z and all processes (Jy)y∈Y with M i
0 = 0 such that

wiT = ciT +

∫ T

0

rβit,T (dZt − µ(At) dt) +
∑
y∈Y

∫ T

0

rδit,T (y) (dJyt − λ(y |At) dt) +M i
T,T .

The remainder of the equivalence between (i) and (ii) follows along the same lines as
the proof in Bernard and Frei [7], requiring only one additional argument to ensure

that
∫ ·
t
re−r(s−t)δis(y)

(
dJys − λ(y|Ãs) ds

)
is a martingale under QÃ. Indeed, since∫

rδi(y)(dJyt − dt) has bounded jumps by construction for any y ∈ Y , it follows that∫ ·
t
re−r(s−t)δis(y)

(
dJys − λ(y|As) ds

)
is a martingale with bounded mean oscillation

(BMO) under QA
u up to any time u ∈ (t,∞). Assumption 1 implies that the jumps

of
(
λ(y|As)−1

)
∆Jys in Footnote 2 are bounded from below by −1 + ε for some ε > 0

and any y ∈ Y . Therefore, Remark 3.3 and Theorem 3.6 in Kazamaki [16] imply

that
∫ ·
t
re−r(s−t)δis(y)

(
dJys − λ(y|Ãs) ds

)
is a BMO-martingale under QÃ

u .

Proof of Lemma 4.3. This proof is analogous to the proof of the second statement of
Lemma 1 in Bernard and Frei [7].

A.2 Convergence of the algorithm

In this appendix we prove the convergence of the algorithm in Proposition 5.3 to E(r).
We first show that Br(W) is monotone in W .

Lemma A.1. Let W ⊆W ′. Then Br(W) ⊆ Br(W ′).

Because Br(W) is defined through payoff pairs being attainable by a solution to
the stochastic differential equation (2), it is necessary to discuss the solution concept
used. Note that the SDE (2) does not admit strong solutions in general, that is,
there might not exist processes (W,A, β, δ,M) that solve (2) for a fixed Brownian
motion Z and fixed Poisson processes (Jy)y∈Y . However, the SDE (2) does admit
weak solutions, where Z and (Jy)y∈Y and in fact the entire filtered probability space
(Ω,F ,F, P ) on which the processes are defined are part of the solution.

Definition A.2. We call (Ω,F ,F, P, Z, (Jy)y∈Y ) a stochastic framework if (Ω,F , P )
is a probability space containing the filtration F, with respect to which Z is a Brow-
nian motion and (Jy)y∈Y are Poisson processes that are pairwise independent and
independent of Z.
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Proof of Lemma A.1. For any w ∈ Br(W), there exists a solution (W,A, β, δ,M)
to (2) in a stochastic framework such that (β, δ) enforces A, W0 = w a.s., Wτ ∈ X a.s.
for every stopping time τ < σ1, and Wσ1 ∈ W a.s. It follows that Wσ1 ∈ W ′ a.s., hence
Br(W) is W ′-relaxed self-generating, hence contained in Br(W ′) by maximality.

In the proof of Lemma A.1, it was sufficient to attain a fixed payoff pair with
an enforceable solution to (2). For the piecewise construction of equilibrium strategy
profiles it will be necessary to concatenate solutions at stopping times, at which point
the continuation value is random. Because the filtration, in which the continuation
value and the stopping times live, is part of the solution to (2), some care is needed at
these concatenation points. We will employ the following lemma for concatenations.

Lemma A.3. For an F0-measurable random variable X in a stochastic framework
(Ω,F ,F, P, Z, (Jy)y∈Y ), the following are equivalent:

(i) X ∈ Br(W) P -a.s.

(ii) There exist a strategy profile A, square-integrable predictable processes β and δ,
a bounded semimartingale W , and a martingale M strongly orthogonal to Z and
(Jy)y∈Y such that W,A, β, δ,M,Z and (Jy)y∈Y satisfy (2), (β, δ) enforces A,
W0 = X P -a.s., Wτ ∈ Br(W) P -a.s. for every F-stopping time τ < σ1, and
Wσ1 ∈ W P -a.s. for every y ∈ Y .

Proof. The proof works similarly to the proof of Lemma 8 in Bernard and Frei [7]
with the additional observation that the path space of cadlag functions admits a
metric that makes it complete and separable by Theorem A.2.2 in Kallenberg [15].
Therefore, it is possible to choose the path space of the public information in a com-
plete and separable way even in the presence of abrupt information. This guarantees
the existence of regular conditional probabilities, which are required to establish the
equivalence as in the proof of Lemma 8 in Bernard and Frei [7].

We are now ready to prove Lemma 5.2 and Propositions 5.3 and 8.4. The proof
of Lemma 5.2 will show how Lemma A.3 is applied to concatenate strategy profiles.

Proof of Lemma 5.2. We first show that W ⊆ Br(W) implies that Br(W) is self-
generating. To that end, fix a payoff pair w ∈ Br(W) arbitrarily and let it be attained
by a solution (W,A, β, δ,M) to (2) on a stochastic framework (Ω,F ,F, P, Z, (Jy)y∈Y )
with (β, δ) enforcing A, W0 = w P -a.s., W ∈ Br(W) on J0, σ1)), and Wσ1 ∈ W P -a.s.9

Define the processes

Z̃ = Z ·+σ1 − Zσ1 , J̃y = Jy·+σ1 − J
y
σ1
, for every y ∈ Y

9For two stopping times σ and τ , the set Jσ, τ)) := {(ω, t) ∈ Ω× [0,∞) | σ(ω) ≤ t < τ(ω)} is
called the (left-closed, right-open) stochastic interval from σ to τ . Closed, open, and left-open,
right-closed stochastic intervals are defined analogously.
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and the filtration F̃ =
(
F̃t
)
t≥0

defined by F̃t := Ft+σ1 . Because Brownian motion

and Poisson processes have independent and identically distributed increments, Z̃ is
an F̃-Brownian motion and J̃y is an F̃-Poisson process for any Y ∈ Y . Therefore,
(Ω,F , F̃, P, Z̃, (J̃y)y∈Y ) is a stochastic framework with Wσ1 ∈ F̃0. Since W ⊆ Br(W)
by assumption, it follows that Wσ1 ∈ Br(W) and hence the equivalence in Lemma A.3
implies the existence of processes W̃ , Ã, β̃, δ̃, and M̃ solving (2) on the stochastic
framework (Ω,F , F̃, P, Z̃, (J̃y)y∈Y ) such that (β̃, δ̃) enforces Ã, W̃0 = Wσ1 P -a.s.,
W̃ ∈ Br(W) on J0, σ̃1)), and W̃σ̃1 ∈ W P -a.s., where σ̃n refers to the nth time any of
the processes

(
J̃y
)
y∈Y jump. These two solutions are concatenated by setting

Ŵ = W1J0,σ1)) + W̃ · −σ11Jσ1,∞))

and similarly for Â, β̂, δ̂, and M̂ . Observe that (β̂, δ̂) enforces Â and Ŵ0 = w P -a.s.
The concatenations are solutions to (2) in the “concatenated” stochastic framework
defined by

Ẑ = Z1J0,σ1)) + (Z̃ + Zσ1)1Jσ1,∞)), Ĵy = Jy1J0,σ1)) + (J̃ + Jyσ1)1Jσ1,∞)).

Note, however, that Ẑ = Z and Ĵy − Jy for all events y ∈ Y , that is, the con-
catenated stochastic framework is identical to the original framework. Therefore,
(Ŵ , Â, β̂, δ̂, M̂) is a solution to (2) in (Ω,F ,F, P, Z, (Jy)y∈Y ). Moreover, σ̃n = σn+1

and hence Ŵ is contained in Br(W) on J0, σ2)) and Ŵσ2 = W̃σ̃1 ∈ W a.s. We have
thus constructed an enforceable solution to (2) that remains in Br(W) up until the
arrival of the second event, such that at the time of the second event, the continua-
tion payoff comes from W ⊆ Br(W). Because Poisson processes have only countably
many jumps, an iteration of this procedure constructs an enforceable solution to (2)
that remains in Br(W) forever, showing that Br(W) is self-generating.

For the converse, observe that self-generation implies that for any w ∈ W , there
exists an enforceable strategy profile with continuations that remain in W . In par-
ticular, Wσ ∈ W a.s. It follows that W ⊆ Br(W) by maximality of Br(W).

Proof of Proposition 5.3. Lemma 5.2 implies that E(r) ⊆ B
(
E(r)

)
and that B

(
E(r)

)
is self-generating. Since E(r) is the largest bounded self-generating set, it follows
that Br

(
E(r)

)
= E(r). Let now W0 = V∗. Since any payoff in Br(V∗) can be attained

by a locally enforceable strategy profile with a continuation payoff in V∗, it follows
that every player i’s continuation value is at least as large as his minmax payoff at
any point in time. This implies that W1 ⊆ W0. Monotonicity of Br implies that
E(r) ⊆ W1 ⊆ W0. An iterated application of Lemma 5.2 thus shows that (Wn)n≥0 is
decreasing in the set-inclusion sense and that it is bounded from below by E(r). It
must converge to a limit W∞ ⊇ E(r) which satisfies W∞ = Br(W∞). The limit set
W∞ is thus self-generating and hence W∞ = E(r) by Lemma 5.2.
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Proof of Proposition 8.4. Observe first that the operators Sr and Kr,a are monotone,
that is, Sr(W) ⊆ Sr(W ′) and Kr,a(W) ⊆ Kr,a(W ′) for two payoff sets W ⊆ W ′.
Because (5) is solved over a larger set of controls in B̃r(W ′) than in B̃r(W), it follows
that B̃r(W ′) ⊇ B̃r(W), i.e., B̃r is monotone as well. The same reasoning shows that
B̃r(W) ⊆ Br(W) for a fixed payoff set W , hence W1 = B̃r(W0) ⊆ Br(W0) ⊆ W0.
Together with monotonicity of B̃r, this shows that (Wn)n≥0 is decreasing in the set-
inclusion sense. Therefore, (Wn)n≥0 converges to some limit W∞.

Corollary 8.2 asserts that B̃r
(
E(r)

)
= Br

(
E(r)

)
= E(r). Monotonicity of B̃r thus

shows that E(r) ⊆ Wn for any n, hence the limit W∞ contains E(r). It remains to
show thatW∞ is not larger than E(r). To that effect, let (W ′n)n≥0 denote the sequence
of iterated applications of Br to V∗. Since B̃r(W) ⊆ Br(W) for any set W , it follows
that W1 ⊆ W ′1 and hence Wn+1 ⊆ B̃r(W ′n) ⊆ Br(W ′n) = W ′n+1 by induction. Thus,
E(r) ⊆ Wn ⊆ W ′n for any n and hence Wn → E(r) as n→∞.

B Regularity of the optimality equation

The purpose of this appendix is to prove that the optimality equation is locally
Lipschitz continuous at almost every point, so that locally, it admits a unique solution.
We show in Lemma C.4 that ∂Br(W) \ Dr(W) is C1, hence ∂Br(W) \ Dr(W) is the
unique C1 solution to the optimality equation. For any fixed r > 0, a ∈ A, and
closed and convex W ⊆ V , consider the optimality equation in the following form:

κa(w,N) = max
(φ,δ)∈Ξa(w,N,r,W)

2N>
(
g(a) + δλ(a)− w

)
r‖φ‖2 . (9)

We start by reducing the two-variable optimization problem to a one-variable opti-
mization by expressing the control φ in terms of δ. In the remainder of the paper, we
denote by T (N) the vector obtained from rotating N by 90 degrees in the clockwise
direction. We will often omit the argument and simply use T , T ′, T̃ , etc. to denote
T (N), T (N ′), T (Ñ) and so on. For players i = 1, 2, define

I ia(N, δi) :=
{
φ ∈ Rd

∣∣ (T iφ, δi) satisfies (3) for player i
}

for any direction N and any δi ∈ R|Y |. Because I ia(N, δi) is the intersection of closed
half-spaces, it is a (possibly unbounded or empty) closed convex polytope. Therefore,
so is Φa(N, δ) := I1

a(N, δ1)∩I2
a(N, δ2), the set of all vectors φ ∈ Rd such that (Tφ, δ)

enforces a. Let φ(a,N, δ) denote the vector of smallest length in Φa(N, δ).

Lemma B.1. Fix a ∈ A. Then (N, δ) 7→ φ(a,N, δ) is locally Lipschitz continuous
where Φa(N, δ) 6= ∅ and N is not a coordinate direction, i.e., N 6∈ {±e1,±e2}.

In an intermediate step, we will show that the set-valued map (N, δ) 7→ Φa(N, δ)
is locally Lipschitz continuous for N different from coordinate directions. We refer
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to Aubin and Frankowska [6] for a detailed overview of set-valued maps and their
properties and state here only the most central property.

Definition B.2. A set-valued map G : x 7→ G(x) ⊆ Rk is said to be Lipschitz
continuous if there exists a constant K such that G(x) ⊆ G(x̃) +K‖x− x̃‖B1(0) for
any x and x̃, where B1(0) denotes the closed unit ball in Rk centered at the origin.

Proof of Lemma B.1. Let I ia(δi) :=
{
β ∈ Rd

∣∣ (β, δi) satisfies (3) for player i
}

be the
solution set to (3) for player i and observe that it is a closed convex polytope. Its
hyperfaces have normal vectors ∆µiji := µ(a)− µ(aiji , a

−i), where ai1, . . . , a
i
mi

is an
enumeration of Ai \ {ai}. The parameter δi determines the location of these hy-
perfaces. Observe that a change from δi to δ̃i shifts face ji by (δ̃i − δi)∆λiji , where
∆λiji := λ(a)− λ(aiji , a

−i). Therefore, the triangle inequality implies that

I ia(δi) ⊆ I ia
(
δ̃i
)

+B1(0)
∑

ji=1,...,mi

∥∥∆λiji
∥∥ ∥∥δ̃i − δi∥∥,

i.e., I ia(δi) is Lipschitz continuous in δi. It is clear that I ia(N, δi) = 1
T iI ia(δi) for i = 1, 2

is locally Lipschitz continuous in (N, δi) for N different from coordinate directions.
To conclude that also the intersection Φa(N, δ) = I1

a(N, δ1) ∩ I2
a(N, δ2) is locally

Lipschitz continuous, we verify the conditions of the technical Lemma E.2. Because
the scaling of I ia(δi) does not affect the direction of its hyperfaces, the normal vectors
of the hyperfaces of I ia(N, δi) are constant in (N, δi). Thus, Lemma E.2 applies, which
establishes that (N, δ) 7→ Φa(N, δ) is locally Lipschitz continuous for non-coordinate
directions N . The statement now follows from the following lemma.

Lemma B.3. Let f(x, y) be a single-valued Lipschitz-continuous function and let G(x)
be a set-valued (locally) Lipschitz-continuous map. Then h(x) = maxy∈G(x) f(x, y) is
(locally) Lipschitz continuous.

Proof. For any x, let U be a neighbourhood of x such that G is Lipschitz contin-
uous on U with Lipschitz constant KG. Let x1, x2 ∈ U and suppose without loss
of generality that h(x1) ≥ h(x2). Let Kf be the Lipschitz constant of f . Then
f(x1, y) ≤ f(x2, y) +Kf‖x2 − x1‖ for any y, hence

h(x1)− h(x2) ≤ Kf‖x2 − x1‖ + max
y∈G(x1)

f(x2, y)− max
y∈G(x2)

f(x2, y)

≤ Kf‖x2 − x1‖ + max
y∈G(x2)+KG‖x2−x1‖B1(0)

f(x2, y)− max
y∈G(x2)

f(x2, y)

≤ Kf‖x2 − x1‖ +KfKG‖x2 − x1‖.

Lemma B.1 significantly simplifies the constraints in the maximization in (9)
because we are left with a maximization over δ only. We will prove regularity of
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a slightly more general form of the optimality equation suitable for the proofs in
Appendix C. Instead of requiring w + rδ(y) ∈ W for every y ∈ Y and some fixed
set W , we will require that δ ∈ D(w) for an affine, compact- and convex-valued
correspondence w 7→ D(w) ⊆ R2×m. We study the optimality equation of the form

κa(w,N) = max
δ∈Ψa(w,N,r,D)

2N>
(
g(a) + δλ(a)− w

)
r‖φ(a,N, δ)‖2 , (10)

where Ψa(w,N, r,D) :=
{
δ ∈ D(w)

∣∣ Φa(N, δ) 6= ∅ and N>
(
g(a) + δλ(a)− w

)
≥ 0
}

.
Observe that the ODE (10) reduces to (9) for D(w) = (W−w)m/r, where we denote
by Xm the m-fold product of a set X ⊆ R2, i.e.,

Xm :=
{
x ∈ R2×m ∣∣ (x1

k, x
2
k)
> ∈ X for every k = 1, . . . ,m

}
.

Lemma B.4. Let w 7→ D(w) be affine, compact- and convex-valued. Then for any
a ∈ A, the map (w,N) 7→ Ψa(w,N, r,D) is compact- and convex-valued. Moreover,
it is locally Lipschitz continuous for N different from coordinate directions.

Proof. Identify R2×|Y | with R2|Y | by setting δ ≈ (δ1, δ2). Let Ψa(w,N) and Ja(N)
denote the sets of all δ, for which N>

(
g(a) + δλ(a) − w

)
≥ 0 and Φa(N, δ) 6= ∅,

respectively, are satisfied. We begin by showing that Ja(N) is closed and convex,
hence so is Ψa(w,N, r,D) = Ja(N) ∩ Ψa(w,N) ∩D(w) as intersection of such sets.
Indeed, let δ1, δ2 ∈ Ja(N). Then there exist φ1, φ2 such that (δj, Tφj) for j = 1, 2
satisfy (3) for every ãi ∈ Ai \ {ai} and i = 1, 2. By linearity of (3), so does (δν , Tφν)
for ν ∈ [0, 1], where we set δν := νδ1 + (1 − ν)δ2 and φν := νφ1 + (1 − ν)φ2.
This shows that Ja(N) is convex. Let (δn)n≥0 be a sequence in Ja(N). Then there
exists (φn)n≥0 such that (δn, Tφn) satisfies (3). Since the inequalities in (3) are not
strict, (limn→∞ δn, T limn→∞ φn) satsfies (3), hence Ja(N) is closed. Compactness of
Ψa(w,N, r,D) now follows because D(w) is compact.

It remains to show (local) Lipschitz continuity. Observe that w 7→ Ψa(w,N) and
w 7→ Ja(N) are affine functions. Lipschitz continuity of w 7→ Ψa(w,N, r,D) thus
follows from Lemma E.1. For local Lipschitz continuity in N , we are going to use the
fact that arbitrary unions of Lipschitz-continuous functions with uniformly bounded
Lipschitz constant are again Lipschitz continuous. To that end, introduce the aux-
iliary sets Ja(N, φ) :=

{
δ ∈ R2|Y |

∣∣ (Tφ, δ) enforces a
}

for φ ∈ Rd. For i = 1, 2, let
ai1, . . . , a

i
mi

be an enumeration of Ai \ {ai} and abbreviate ∆µiji := µ(a)− µ(aiji , a
−i)

and ∆λiji := λ(a)− λ(aiji , a
−i) as in the proof of Lemma B.1. Then Ja(N, φ) is a

closed convex polytope, whose hyperfaces have normal vectors(
∆λ1

j1

0

)
, j1 = 1, . . . ,m1,

(
0

∆λ2
j2

)
, j2 = 1, . . . ,m2. (11)

Because N only determines the location of these hyperfaces N 7→ Ja(N, φ) is Lips-
chitz continuous similarly as in the proof of Lemma B.1, with a Lipschitz constant
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that depends only on the vectors ∆µiji . In particular, the Lipschitz constant of
N 7→ Ja(N, φ) is uniformly bounded in φ.

Let W̄ be a bounded polytope containing D(w) such that none of its normal
vectors are arbitrarily close to being linearly dependent to any 2|Y |−1 normal vectors
of Ψa(w,N) or any of the vectors in (11). Then Ja(N, φ)∩ W̄ and Ψa(w,N)∩W̄ are
convex bounded polytopes. Let X (N) be any subset of normal vectors to Ψa(w,N)
and Ja(N, φ). If there exists a linear combination amongst the vectors in X (N),
then there exists a linear combination also in X

(
Ñ
)

for Ñ arbitrarily close to N by

multiplying the coefficients by Ñ i/N i, respectively. Therefore, Lemma E.2 applies
and shows that N 7→ Ψa(w,N) ∩ Ja(N, φ) ∩ W̄ is locally Lipschitz continuous in
N for non-coordinate directions N . Since D(w) ⊆ W̄ is constant in N and the
intersection of a Lipschitz continuous map with a convex and compact set is Lipschitz
continuous, it follows that for any φ ∈ Rd, N 7→ Ψa(w,N) ∩ Ja(N, φ) ∩ D(w) is
Lipschitz continuous. Local Lipschitz continuity of N 7→ Ψa(w,N, r,D) now follows
from the fact that the arbitrary union of Lipschitz continuous maps with uniformly
bounded Lipschitz constants is Lipschitz again.

So far we have shown that (10) is locally Lipschitz continuous for almost every
direction N , where φ(a,N, δ) is well defined and bounded away from 0. Define

Ea(r,D) :=
{

(w,N) ∈ R2 × S1
∣∣ Ψa(w,N, r,D) 6= ∅

}
Γa(r,D) :=

{
(w,N) ∈ R2 × S1

∣∣ ∃δ ∈ Ψa(w,N, r,D) with φ(a,N, δ) = 0
}

and Γ(r,D) :=
⋃
a∈A Γa(r,D). Denote by P := R2 × {±e1,±e2} the set of points

(w,N) ∈ R2 × S1 with a coordinate normal vector N .

Lemma B.5. Let D be an affine, compact- and convex-valued correspondence. If a
sequence (wn, Nn)n≥0 converges to (w,N) 6∈ P such that Ψa(wn, Nn, r,D) 6= ∅ for all
n ≥ 0, then Ψa(w,N, r,D) 6= ∅.

Proof. Let δn ∈ Ψa(wn, Nn, r,D). Because D(wn) is uniformly bounded by D(V), the
sequence (δn)n≥0 is uniformly bounded as well. Therefore, (δn)n≥0 converges along a

subsequence (nk)k≥0 to some finite limit δ with N>
(
g(a) + δλ(a)− w

)
≥ 0. Since D

is closed-valued and Lipschitz continuous, δ(y) ∈ D(w) for every y ∈ Y . It remains
to show that Φa(N, δ) 6= ∅. Suppose towards a contradiction that the converse is
true. Then closedness of I ia(N, δi) for i = 1, 2 implies that I1

a(N, δ1) and I2
a(N, δ2)

are strictly separated. By continuity, I1
a(N`k , δ

1
`k

) and I2
a(N`k , δ

2
`k

) are separated as
well for k sufficiently large, a contradiction.

Corollary B.6. For any a ∈ A and ε ≥ 0, Ea(r,D) ∪ P and Γa(r,D) are closed.
Therefore, so is Γ(r,D).
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Proof. Closedness of Ea(r,D) ∪ P is established in Lemma B.5. The proof that
Γa(r,D) is closed follows along the same lines with the additional observation that
0 ∈ Φa(N, δ) for some N ∈ S1 if and only if 0 ∈ Φa(N, δ) for all N ∈ S1. Finally,
Γ(r,D) is closed as finite union of closed sets.

Proposition B.7. Suppose that W has non-empty interior and that Assumption 2
is satisfied. For any affine, compact- and convex-valued correspondence D,

κ(w,N) = max
a∈A

max
δ∈Ψa(w,N,r,D)

2N>
(
g(a) + δλ(a)− w

)
r‖φ(a,N, δ)‖2 (12)

is locally Lipschitz continuous outside of Γ(r,D), except where (w,N) leaves or enters
Ea(r,D) of the maximizing action profile a. Here, we interpret κ(w,N) = 0 on⋂
a∈AEa(r,D)c, i.e., where the maxima are taken over empty sets.

When we refer to a solution to (12), we will always mention explicitly with respect
to which map D (12) is being solved.

Proof. Suppose first that N is not a coordinate direction, that is, (w,N) ∈ Ea(r,D)\(
Γa(r,D)∪P

)
. We first show local Lipschitz continuity of κa in (10) for fixed a ∈ A.

Since Γa(r,D) is closed by Corollary B.6, there exists an open neighbourhood U of
(w,N) bounded away from Γa(r,D)∪P . Therefore, infN,δ ‖φ(a,N, δ)‖ ≥ c and hence
the function that is maximized in the right hand side of (10) is Lipschitz continuous
on U by Lemma B.1. It follows that κa is Lipschitz continuous by Lemmas B.3
and B.4. Because (12) is the maximum over finitely many functions κa, it is Lipschitz
continuous except where (w,N) leaves the domain of the maximal function κa.

Suppose now that N is a coordinate direction and without loss of generality, let
N ∈ {±e1}. Let a denote the maximizing action profile at (w,N). Because we
show Lipschitz continuity only where maximizers in (12) do not change, we may
assume that a maximizes (12) in a neighborhood of (w,N). If κa is identically zero
in a neighborhood, the statement is trivial, hence suppose that a solution is strictly
curved. Let I2

a(N ′, δ2) be defined as in the proof of Lemma B.1, and let φ2(a,N ′, δ2)
denote the shortest vector in I2

a(N ′, δ2). Note that I2
a(N ′, δ2) and φ2(a,N ′, δ2) are

Lipschitz continuous in a neighborhood of N . It follows with an identical argument
as in the proof of Lemma B.4 that Ψ2

a(w
′, N ′, r,D) := Ψ2

a(w
′, N ′, r,D) ∩ Ψ1

a × Rd

is locally Lipschitz continuous in (w′, N ′) in a neighborhood of (w,N). Moreover,
Ψ2
a(w,N, r,D) has non-empty interior by assumption, hence Ψ2

a(w
′, N ′, r,D) is non-

empty for (w′, N ′) in a neighborhood of (w,N) by Lipschitz continuity. Therefore,

κ̃a(w
′, N ′) := max

δ∈Ψ2
a(w′,N ′,r,D)

2N ′>
(
g(a) + δλ(a)− w′

)
r
(
φ2(a,N ′, δ2)

)2
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is Lipschitz continuous in a neighborhood of (w,N) as well. Note that κ̃a ≤ κa and
κa(w,N) = κ̃a(w,N), hence it follows that

κa(w,N)− κa(w′, N ′) ≤ κ̃a(w,N)− κ̃a(w′, N ′) ≤ K‖w − w′‖ +K‖N −N ′‖,

i.e., κa is locally Lipschitz continuous as well.

C Characterization of ∂Br(W)

We start by showing that ∂Br(W) \ Dr(W) is given by the optimality equation.
Because the continuous part of the signal is what creates the curvature, these steps
are similar in ideas to Sannikov [20]. Some technical bounds on the provision of
incentives and proximity of solutions to (12) for different choices of D are deferred
to Appendix E.2. We begin with the proof of Lemma 6.4.

Proof of Lemma 6.4. We prove the more general result, where we require δ ∈ D(w)
for an affine, compact- and convex-valued correspondence w 7→ D(w) ⊆ R2×m instead
of w+rδ(y) ∈ W for every y ∈ Y . Fix w in the relative interior of C and choose η > 0
small enough such that Nw

>Nv > 0 for all v ∈ C ∩ Bη(w), where Bη(w) denotes the
closed ball around w with radius η. On Bη(w), ∂W admits a local parametrization
f in the direction Nw. For any v ∈ Bε(w), define the orthogonal projection v̂ = Tw

>v
onto the tangent, where Tw is the vector obtained by rotating Nw by 90◦ in clockwise
direction. Denote by π(v) =

(
v̂, f(v̂)

)
the projection of v ∈ Bη(w) onto ∂W in the

direction Nw.
Let

(
W,A, β, δ, Z, (Jy)y∈Y ,M

)
be a weak solution to (2) with initial condition

W0 = w such that M ≡ 0 and for all t ≥ 0, At = a∗
(
π(Wt)

)
, δt = δ∗

(
π(Wt−)

)
, and

βt = Ttφ
∗(π(Wt)

)
on J0, τ)), where we abbreviated Nt = Nπ(Wt) and Tt = Tπ(Wt),

and define τ := σ1 ∧ inf{t ≥ 0 | Wt 6∈ Bη(w)}, where σ1 indicates the first time any
infrequent event occurs. Since δ ∈ ΨA(π(W ), N, r,D) a.e. by construction, it follows
that the solution satisfies (b) in Lemma 4.1 up to time τ . Since the maximizer of a
measurable function is measurable and π is measurable, A, β and δ are all predictable.
Moreover, because δ∗ is bounded and φ is a Lipschitz-continuous function of δ∗, they
are both square-integrable.

We measure the distance ofW to C byDt = N>Wt−f
(
Ŵt

)
. Note that f is differen-

tiable by assumption and
(
−f ′(Ŵt), 1

)
= `tNt, where `t :=

∥∥(−f ′(Ŵt), 1
)∥∥. Since f

is locally convex it is second order differentiable at almost every point by Alexandrov’s
theorem. In particular, f ′ has Radon-Nikodým derivative f ′′(Ŵt) = −κ(π(Wt))`

3
t . It

follows from the Meyer-Itō formula (see Theorem 19.5 in Kallenberg [15]) that

dDt = r`tNt
>(Wt − g(At)− δtλ(At)

)
dt+ r`tNt

>Ttφt
(
dZt − µ(At) dt

)
+ r`t

∑
y∈Y

Nt−
>δ∗
(
π(Wt); y

)
dJyt −

1

2
f ′′(Ŵt−) d[Ŵ ]t,
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The volatility term is zero because N>T = 0. Note that on J0, σ1)), ∆Jy ≡ 0 for any
y ∈ Y implies that [Ŵ ] = 〈Ŵ 〉. Using (4) and the fact that Nw

>Nt = Tw
>Tt = `−1

t ,
we obtain that on J0, τ)),

dDt = r`tNt
>(Wt − g(At)− δtλ(At)

)
dt+

r2

2
κ
(
π(Wt)

)
`3
t

∣∣Tw>Tt∣∣2|φt|2 dt = rDt dt,

where we used Nt
>(Wt − π(Wt)

)
= Nt

>NwDt = `−1
t Dt in the second equality. It

follows that Dt = D0ert, which is identically zero because D0 = 0. On {τ < σ1} we
can repeat this procedure and concatenate the solutions to obtain a solution to (2)
that remains on C until either an event y occurs or an end point of C is reached. Let
ρ denote the hitting time of an end point of C. Then D0 = 0 on J0, ρ ∧ σ1)) implies
that π(W ) = W and hence δ ∈ ΨA(W,NW , r,D).

Corollary C.1. For any affine, compact- and convex-valued D, let C be a C1 solution
to (12) with positive curvature throughout. Then any payoff in the relative interior
is attainable by a strategy profile A, enforced by (β, δ) with δ ∈ D

(
(W (A)

)
such that

W (A) remains on C until either an endpoint of C is reached or an event occurs.

Proof. For any w ∈ C, let a∗(w) and δ∗(w) denote the maximizers in (12). Since C
is assumed to have positive curvature throughout, the maximization in (12) is not
taken over empty sets. By Corollary B.6, the maximizers are attained.

The following two lemmas establish that locally, ∂Br(W) \ Dr(W) coincides with
a solution to (5). Lemma C.2 states that it is impossible for a solution to (5) to
cut through Br(W). For a curve C with positive curvature throughout, we denote by
NC :=

{
(w,N) ∈ C×S1

∣∣ N>(w − v) ≥ 0 ∀ v ∈ C
}

its outward normal bundle.

Lemma C.2. Let w ∈ ∂Br(W) with outward normal N ′. Define the projection
π : U → ∂Br(W) of a suitably small neighborhood U of w onto ∂Br(W) in the
direction of N ′ and set

D(w) :=
{
δ ∈ R2

∣∣ ∃γ ∈ [0, 1] such that γw + (1− γ)π(w) + rδ ∈ W
}
. (13)

It is impossible for a C1 solution C to (12) for D oriented by v 7→ Nv with end points
vL, vR ∈ U to simultaneously satisfy

(i) vL + εN ′ 6∈ Br(W) and vL + εN ′ 6∈ Br(W) for any ε > 0,

(ii) there exists v0 ∈ C such that v0 + ηN ′ ∈ Br(W) for some η > 0,

(iii) infv∈C Nv
>N ′ > 0,

(iv) NC ∩
(
Γ(r,D) ∪ P

)
= ∅,

(v) for any a ∈ A, NC ∩ ∂Ea(r,D) = ∅.
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Proof. Suppose towards a contradiction that there exists such a curve C. Since D is
affine, compact- and convex-valued, it follows from Conditions (iv) and (v) as well as
Proposition B.7 that C is C2 at almost every point. By Condition (iii), there exists
a local parametrization f of C in the direction N ′. Define the orthogonal projection
v̂ = T ′>v onto the tangent for any v ∈ U , where T ′ is the counterclockwise rotation
of N ′ by 90◦. Denote by π̂(v) =

(
v̂, f(v̂)

)
the projection of v ∈ U onto C in the direc-

tion N ′. By definition of Br(W), there exists a solution
(
W,A, β, δ,M,Z, (Jy)y∈Y

)
to (2) with W0 = v0 + ηN ′ such that on J0, σ1)), (β, δ) enforces A with δ ∈ D(W ).
Define the stopping time τ1 := inf{t ≥ 0 | Wt 6∈ U}.

Suppose first that NC ⊆ Ea(r,D) for some a ∈ A, i.e., C is a non-trivial solution
to (12). Let Nt := Nπ̂(Wt) and Tt := Tπ̂(Wt) and observe that these projections are

well defined on J0, τ1)). We measure the distance of W to C by Dt = N ′>Wt− f
(
Ŵt

)
.

Denote `t := 1/(Tt
>T ′) and γt := `tNt

>T ′ for the sake of brevity and observe that
γ̄ := supw∈C Nw

>T ′/(Tw
>T ′) <∞ by Condition (iii). Then, similarly as in Footnote 3

of Hashimoto [12], it follows from Itō’s formula that

Dt ≥ D0 +

∫ t

0

ζs ds+

∫ t

0

ξs
(
dZs − µ(As) ds

)
+
∑
y∈Y

∫ t

0

ρs(y)dJys + M̃t,

where

ζt = r`t

(
Nt
>(Wt − g(At)− δtλ(At)

)
+
r

2
κ
(
π̂(Wt)

)∥∥Tt>βt + γtNt
>βt
∥∥2
)

= rDt + r`t

(
Nt
>(π̂(Wt)− g(At)− δtλ(At)

)
+
r

2
κ
(
π̂(Wt)

)∥∥Tt>βt + γtNt
>βt
∥∥2
)
,

ξt = r`tNt
>βt, ρt(y) = r`t−Nt−

>δt(y) and M̃t =
∫ t

0
r`t−Nt−

>dMt. Define the stopping
time τ2 := inf{t ≥ 0 | Dt ≤ 0} and observe that τ2 ≤ τ1 a.s. by Condition (i). We
will show that there exists an equivalent probability measure R under which the
drift rate of Dt is bounded from below by rDt. Then, Dt becomes arbitrarily large
with positive R-probability, and hence positive QA-probability. Because it may take
arbitrarily long until an accident arrives, this leads to a contradiction because V is
bounded.

Let Ξ1 denote the set where N>
(
π̂(W )− g(A)− δλ(A)

)
≥ 0. On Ξ1, ζt ≥ rDt,

hence there is no need to change the probability measure. It follows from Condi-
tion (iv) that β 6= 0 on Ξc

1. Let Ξ2 ⊆ Ξc
1 be the set where NĈ ⊆ EA(r,D), i.e.,

ΨA(π̂(W ), N, r,D) 6= ∅. Set

δ̂ ∈ arg min
x∈ΨA(π̂(W ),N,r,D)

∥∥x− δ1
∥∥+

∥∥x− δ2
∥∥,

then (12) implies that

ζ ≥ rD−r`N>(δ− δ̂)λ(A)−r`N>
(
g(A)+ δ̂λ(A)−π̂(W )

)(
1−

∥∥T>β∥∥2 − γ
∥∥N>β∥∥2∥∥φ(a,N, δ̂)∥∥2

)
.
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Denote Λ := maxa∈A
∑

y∈Y λ(y|a) and observe that N>
(
g(A) + δ̂λ(A) − π̂(W )

)
is

uniformly bounded above by the constant K1 := diamV + sup(W − V)Λ <∞. The
condition that W + rδ(y) ∈ W implies that δ(y) ∈ D(W ) on J0, τ2)) for every y ∈ Y .
Due to Lemma E.3, there exist constants K2, Ψ̄ such that

ζ ≥ rD − r`ΛK2

∥∥N>β∥∥ − r`K1
2K2 + 2γ̄

Ψ̄

∥∥N>β∥∥ =: rDt −K3‖ξ‖.

On the set Ξc
1∩Ξc

2, condition (v) implies that NC is bounded away from EA(r,D)∪
P by virtue of Corollary B.6. Lemma E.4 thus implies that

∥∥N>β∥∥ ≥ K4 for some
constant K4 and hence

ζt ≥ rDt − r`tK1 ≥ rDt −
K1

K4

‖ξt‖.

Let T := min
{
t ≥ 0

∣∣ D0(1 + rt)/2 ≥ supw∈V N
>w − f(ŵ)

}
and observe that T is

deterministic. We define a density process L on [0, T ] by setting

dLt
Lt

= ψt dZt +
∑
y∈Y

(
1

λ(y|At−)
− 1

)
dJyt ,

where

ψt = K3
ξt
‖ξt‖

1Ξ2 +
K1

K4

ξt

‖ξt‖2 1Ξc
1∩Ξc

2
.

Because
∫ T

0
‖ψt‖2 dt <∞ QA

T -a.s., it follows from Girsanov’s theorem that L defines
a probability measure R equivalent to QA

T on FT such that dZ ′t = dZt − ψt dt is an
R-Brownian motion on [0, T ], such that Jy has intensity 1 for every y ∈ Y , and M̃t

is an R-martingale because it is orthogonal to L. Then

Dt ≥ D0 +

∫ t

0

rDs ds+

∫ t

0

ξs
> dZ ′s + M̃t +

∑
y∈Y

∫ t

0

ρs(y) dJys . (14)

Since W is bounded,
∫ t

0
ξs
> dZs is a BMO(QA)-martingale. Therefore,

∫ t
0
ξs
> dZ ′s

is a BMO(R)-martingale by Theorem 3.6 in Kazamaki [16]. Define the stopping
time τ3 := inf{t ≥ 0 | Dt ≤ D0(1 + rt)/2} and observe that τ3 ≤ τ2 ∧ T . It follows
from (14) that

Dτ3 −
D0

2
(1 + rτ3) ≥ D0

2
+ Fτ3 +

∑
y∈Y

∫ τ3

0

ρs(y) dJys ,

where Ft =
∫ t

0
ξs dZ ′s + M̃t is an R-martingale starting at 0. Define the R-martingale

Gt := e|Y |t1{t<σ} and observe that G is orthogonal to F . Because τ3 ≤ T a.s.,

0 ≥ ER
[(
Dτ3 −

D0

2
(1 + rτ3)

)
1{T<σ}

]
≥ ER

[
D0

2
1{T<σ} + Fτ31{T<σ}

]
=
D0

2
R(T < σ) + e−|Y |TER[Fτ3GT ] > 0,
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Figure 12: Construction of a curve C′ that cuts through Br(W).

where the last inequality follows from the optional stopping theorem and because R
is equivalent to QA

T . This is a contradiction.
Suppose now that NC ⊆

⋂
a∈AEa(r,D)c, i.e., C is a straight line segment. Let

D denote the distance of W to C in the direction of the normal vector N ′ of C.
Condition (iv) makes it possible to apply Lemma E.4, hence any (β, δ) enforcing A
it follows that

∥∥N>β∥∥ ≥ K for some constant K. Similarly as before, the drift of Dt

is thus bounded from below by rDt −K1/
(
Kr`t

∥∥N>βt∥∥). Therefore, there exists an
equivalent probability measure under which D grows arbitrarily large with positive
probability, a contradiction.

Lemma C.3. Fix w ∈ Br(W) \ Dr(W) with outward normal N , where (5) is locally
Lipschitz continuous. Then ∂Br(W) coincides with a solution to (5) in a neighbour-
hood of (w,N).

Proof. We first show that a solution to (12) with D given in (13) coincides with
∂Br(W), which implies that also a solution to (5) stays on ∂Br(W). In a sufficiently
small neighbourhood of (w,N), (12) admits a unique C2 solution that is continuous
in initial values. Let C be solution with initial value (w,N) and suppose towards a
contradiction that C escapes clBr(W) in a neighbourhood of w. Then we can change
initial conditions slightly to obtain a curve C ′ that cuts through Br(W). Specifically:

• If ∂Br(W) is not C1 at w, we obtain C ′ as a solution to (5) with initial condi-
tions (w − ηN,N) for η > 0 sufficiently small.

• If ∂Br(W) is C1 at w, we obtain C ′ for initial conditions (w,N ′), where N ′ is a
slight rotation of N as illustrated in the left panel of Figure 12.

Because the set where (12) fails to be locally Lipschitz continuous is closed by Corol-
lary B.6 and Proposition B.7, a small enough perturbation satisfies NC′∩Γa(r,D) = ∅
for every a ∈ A and either NC′ ⊆ Ea(r,D) or NC′ ∩

(
Ea(r,D)∪P

)
= ∅ for any a ∈ A,

that is, C ′ satisfies conditions (iv) and (v) of Lemma C.2. By choosing η or N ′ suit-
ably, we can get conditions (i)–(iii) to hold as well, hence C ′ is impossible due to
Lemma C.2. We conclude that ∂Br(W) is C1 where (12) is locally Lipschitz contin-
uous and that a solution to (12) cannot escape clBr(W).
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Suppose towards a contradiction that C falls into the interior of Br(W) in a
neighbourhood of (w,N), that is, there exists v ∈ C∩ intBr(W) arbitrarily close to w.
By convexity of Br(W), this is not possible if C is a trivial solution to (12), hence
C is a solution with positive curvature. We may assume without loss of generality
that this happens to the right of w as illustrated in Figure 13. Let v be close enough
to w such that (12) with D is Lipschitz continuous on an open neighbourhood of
NC := {(w̃, Nw̃) | w̃ ∈ C between w and v}. Let δ > 0 such that the closed ball
Bδ(v) is contained in the interior of Br(W). For ζ > 0 to be chosen later, let
Wζ := {w ∈ V | d(w,W) ≤ ζ}, where d(w,W) denotes the minimal distance of d
from W . Set

Dζ(w) :=
{
δ ∈ R2

∣∣ ∃κ ∈ [0, 1] such that κw + (1−κ)π(w) + rδ ∈Wζ

}
,

where π is the projection onto ∂Br(W) in the direction N . Observe that for ζ suffi-
ciently small, (12) with Dζ is Lipschitz continuous in a neighbourhood of NC, hence
it admits a unique solution Cζ . Choose now ζ small enough such that Lemma E.5
asserts the existence of v′ ∈ Cζ ∩Bδ(v).

Because Cζ is continuous in initial conditions, a solution C ′ζ to (12) with Dζ for
a slight rotation N ′ of N reaches a neighbourhood of v′ in Br(W). As illustrated
in Figure 13, C ′ζ will escape clBr(W) to the right of w and enter Br(W) to the left
of w. Thus, for N ′ close enough to N , there exist vL, vR ∈ C ′ζ ∩ Br(W), such that
‖w̃ − π(w̃)‖ ≤ ζ for all w̃ ∈ C ′ζ . By Corollary C.1, for any w′ ∈ C ′ζ there exists a solu-
tion to (2) with W0 = w′ such that δ ∈ ΨA(W,N, r,Dζ) on J0, σ1)) and W ∈ C ′ζ until

it reaches an end point of C ′ζ or an event occurs. Let τ := inf
{
t ≥ 0

∣∣ Wt ∈ {vL, vR}
}

and observe that Wτ ∈ Br(W) on {τ < σ1}. The condition that δ ∈ Dζ(W ) a.e.
for every y ∈ Y implies that x + rδt(y) ∈ Wζ for some x between Wt and π(Wt).
On J0, τ ∧ σ1)) it holds that ‖Wt − x‖ ≤ ζ, and hence δ ∈ ΨA(W,NW , r,D). Because

Wτ ∈ Br(W) on {τ < σ1}, by definition of Br(W) there exists a solution
(
W̃ , Ã, β̃, δ̃

)
with W̃0 = Wτ such that on Jσ1, σ2)),

(
β̃, δ̃
)

enforces Ã and W̃ + rδ̃(y) ∈ D
(
W̃
)

a.e.

Therefore, a concatenation of (W,A, β, δ) with (W̃ , Ã, β̃, δ̃) satisfies the same prop-
erties, which shows that C ′ζ ⊆ Br(W), which is a contradiction to w′ 6∈ clBr(W).

Finally, because (5) is Lipschitz continuous almost everywhere, we need to show
that ∂Br(W) is C1 to grant uniqueness of the solution. By convexity, Br(W) cannot
have inward corners, and it will follow with another escaping argument that it cannot
have outward corners outside of Dr(W) either.

Lemma C.4. ∂Br(W) \ Dr(W) is C1 where (5) fails to be Lipschitz continuous.
Moreover, outside of P, the set of all points in ∂Br(W) \ Dr(W), where (5) fails to
be Lipschitz continuous, has relative measure 0.

Proof. We already know from Lemma C.3 that ∂Br(W) \ Dr(W) is C1 where it is
locally Lipschitz continuous. Suppose, therefore, that ∂Br(W) has a corner at w ∈
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Bδ(v)

v′vL
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w′ C ′ζ
N
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Figure 13: If C falls into the interior of Br(W), there exists a solution C′ζ to (9) with initial
conditions (w,N ′) and a slight reduction over controls δ ∈ Dζ(w) such that C′ζ escapes Br(W). For
small ζ and N ′ close to N , there exists an enforceable strategy profile attaining w′ 6∈ Br(W) which
reaches Br(W) with certainty. This leads to a contradiction.

∂Br(W) \ Dr(W) where (5) fails to be locally Lipschitz continuous. Proposition B.7
implies that (w,NL) and (w,NR) are cointained in ∂Ea(r,W) and ∂Ea′(r,W), re-
spectively, where NL and NR are the extremal normal vectors to ∂Br(W) at w. Since
Ea(r,W) ∪ P is closed, there exists an open neighborhood U of w and a set of nor-
mal vectors T ⊆ Nw

(
Br(W)

)
such that U ∩ intBr(W)× T is either contained in or

has empty intersection with Ea. Since w 6∈ G, it follows that {w} × Nw
(
Br(W)

)
∩

Γ(r,W) = ∅. Since Γ(r,W) is closed, U ∩ intBr(W) × T ∩ Γ(r,W) = ∅ for U suf-
ficiently small. We can thus construct a solution to C to (12) for D given in (13)
with initial conditions (v,N) ∈ U ∩ intBr(W) × T that cuts through Br(W) with
NC ⊆ U ∩ intBr(W) × T . By choice of U and T , the conditions in Lemma C.2 are
satisfied, which is a contradiction.

For the second statement, suppose that there exists C ⊆ ∂Br(W) \ Dr(W) of
positive length. By shortening the line segment we may assume that NC ⊆ P or
Nint C ∩ P = ∅. Suppose towards a contradiction that Nint C ∩ P = ∅. Then Proposi-
tion B.7 shows that (w,N) enters and leaves Ea(r,D) of the maximizing action profile
a at almost every (w,N) ∈ NC. Because A is finite we may assume that this is the
same action profile. This implies that NC ⊆ ∂Ea(r,D) and hence Nint C ⊆ Ea(r,D)
by Corollary B.6, a contradiction.

Next, we prove Proposition 6.7, showing that extremal points of any C1 segment
in Dr(W) and any corners of Dr(W) must lie in Kr(W).

Proof of Proposition 6.7. Suppose first that w is a corner of Br(W) inDr(W)\Sr(W).
By definition of Dr(W), there exists (a, δ0) such that δ0 ∈ Ψa, w + rδ0(y) ∈ W for
every y ∈ Y , and N>

(
g(a)+δ0λ(a)−w

)
≥ 0 for all N ∈ Nw

(
Br(W)

)
. Since w is not a

stationary point, w 6= g(a)+δ0λ(a) and hence N>
(
g(a)+δ0λ(a)−w

)
> 0 for almost all

normal vectors in Nw
(
Br(W)

)
. Lemma 6.6 thus readily implies that w ∈ ∂Kr,a(W).

It remains to show that the normal vectors to the sets Br(W) and Kr,a(W) satisfy the
desired inclusion property. Suppose towards a contradiction that the converse holds,
that is, Nw

(
Br(W)

)
6⊆ Nw

(
Kr,a(W)

)
. Since both Nw

(
Br(W)

)
and Nw

(
Kr,a(W)

)
are

closed, there exists N ∈ Nw
(
Kr,a(W)

)
\Nw

(
Br(W)

)
with N>

(
g(a)+δ0λ(a)−w

)
> 0.
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By definition of the normal vector, wε := w + εT ∈ intKr,a \ clBr(W) for ε > 0
sufficiently small, where T is orthogonal to N with T>N ′ < 0 for all N ′ ∈ Nw

(
Br(W)

)
.

Fix such an ε sufficiently small and define wε,γ := γw+(1− γ)wε for γ ∈ [0, 1]. Since
wε is in the interior of Kr,a(W), there exists δ′ ∈ int Ψa with wε + rδ′(y) ∈ intW for
every y ∈ Y . Let δγ := γδ0 + (1 − γ)δ′ δε. Since W and Ψa are convex, it follows
that for any γ > 0, δγ ∈ int Ψa and wε,γ + rδγ(y) ∈ intW for every y ∈ Y . Moreover
for γ sufficiently small, N>

(
g(a) + δγλ(a) − wε,γ

)
> 0. A contradiction can thus be

obtained in the same way as in the proof of Lemma 6.6.
Suppose next that Dr(W) contains a C1 line segment C of positive length and

positive curvature. Let w be in the relative interior of C and denote by Nw the unique
normal vector to ∂Br(W) at w. If there exists (a, δw) with δw ∈ Ψa ∩ (W − w)m/r
with Nw

>(g(a) + δwλ(a) − w
)
> 0, then the argument works in the same way as

before: conditions (i) and (iii) of Lemma 6.6 have to be violated, showing that
w ∈ ∂Kr,a(W) and if Nw 6∈ Nw

(
Kr,a(W)

)
, we can enlarge the set in the same way as

before. Suppose, therefore, that every w ∈ C is decomposable only by (aw, δw) with
Nw
>(g(aw) + δwλ(aw)− w

)
= 0. Since w 6∈ Sr(W), the dirft is parallel to ∂C. Thus,

there exists v outside of Br(W) arbitrarily close to w withNw
>(g(aw)+δwλ(aw)−w

)
>

0. If any such v is in Kr,a, we obtain a contradiction in the same way as before.
Therefore, w ∈ ∂Kr,aw(W). Finally, if Nw 6∈ Nw

(
Kr,aw(W)

)
, then there exists a

payoff pair v ∈ C arbitrarily close to v that are in the interior of Kr,aw(W). Since
there are only finitely many action profiles, this is a contradiction.

D Closedness of Br(W)

This appendix shows that the set Br(W) is closed. It also contains the proof of
Theorem 6.8 based on the auxiliary results in Appendix C and this appendix.

Lemma D.1. Suppose that w ∈ Dr(W) is either a corner or part of a continuously
differentiable line segment in Dr(W). Then w ∈ Br(W).

Proof. By Lemma 6.3, any payoff pair w ∈ Sr(W) is contained in Br(W). Suppose,
therefore, that w 6∈ Sr(W) and consider first the case where w is a corner of Br(W).

Suppose first that there exist an action profile a ∈ A, a measurable selection
δ∗ : Kr,a → Ψa and a time t0 > 0 such that the solution (W,A, β, δ,M) to (2)
with W0 = w, A ≡ a, β ≡ 0, δ = δ∗(W ), and M ≡ 0 remains in Br(W) ∩ Kr,a on
J0, t0∧σ1)) and Wt0 is in the interior of Br(W) on the set {t0 < σ1}. Observe that such
a solution W to (2) travels on a deterministic path before the arrival of an infrequent
event y ∈ Y . In particular, δ is predictable. Since Wt0 ∈ Br(W) on the event
{t0 < σ1}, there exists a solution

(
W̃ , Ã, β̃, δ̃, M̃

)
attaining Wt0 with (β̃, δ̃) enforcing

Ã such that W̃ ∈ Br(W) up until the arrival of the first infrequent event, at which
point W jumps toW . The concatenation (W,A, β, δ,M)1[0,t0] +(W̃ , Ã, β̃, δ̃, M̃)1(t0,∞)

thus satisfies the same conditions on [0,∞), showing that w ∈ Br(W).
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Suppose now that no such a, δ∗, t0 exist. Then there exists no strategy profile
attaining w without using the Brownian information to structure incentives. We can
thus obtain a contradiction using an escaping argument similarly to Lemma C.2.
Let Cε be a solution to (5) starting in w − εN for an outward normal vector N and
ε > 0. For ε sufficiently small, Cε intersects ∂Br(W) and satisfies the conditions of
Lemma C.2 outside a set of measure 0. Such a curve is impossible by Lemma C.2.

Suppose next that Dr(W) is locally a C1 line segment C. Since there are only
finitely many action profiles, there exists a subsegment C ′ of positive length that
can be decomposed by some action profile a ∈ A. If C ′ has positive curvature, then
C ′ ⊆ ∂Kr,a(W) by Proposition 6.7. Since Kr,a(W) is convex, a measurable selector δ∗

as in the previous case exists and C ′ ∈ Dr(W). If C ′ is a straight line segment, then
any payoff pairs in the relative interior can be attained by public randomization and
its endpoints can be attained as before.

Lemma D.2. Br(W) is closed.

Proof. By public randomization, a straight line segment is contained in Br(W) if
both of its end points are contained in Br(W). Similarly, Lemma 6.4 shows that
curved parts of ∂Br(W) \ Dr(W) are contained in Br(W) if its end points are. Since
Lemma D.1 shows that Dr(W) ⊆ Dr(W), the closure of Br(W) is W-relaxed gener-
ating, hence it is contained in Br(W) by maximality.

Proof of Theorem 6.8. Lemmas C.3 and C.4 imply that ∂Br(W) \ Dr(W) is a C1

solution to (5). It follows from Proposition 6.7 that Gr(W) has the desired properties.
Finally, Br(W) is closed by Lemma D.2.

E Auxiliary results related to the optimality equation

E.1 Lipschitz continuity of set-valued maps

Consider an arbitrary family (Fi)i∈I of Lipschitz continuous set-valued maps. If their
Lipschitz constants (Ki)i∈I are uniformly bounded, then the union x 7→

⋃
i∈I Fi(x)

is Lipschtiz continuous again. However, the intersection of two Lipschitz continuous
maps may fail to be Lipschitz continuous in general. In this appendix, we show
Lipschitz continuity of the intersection for two special cases that are relevant in our
setting.

Lemma E.1. The intersection of two convex-valued affine maps is Lipschitz contin-
uous.

Proof. Let F and G be two convex-valued affine functions. It is sufficient to show
that F ∩ G is continuous as it is then Lipschitz continuous since both F and G are
affine. Suppose towards a contradiction that F ∩G fails to be continuous at some x0,
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F (x) ∩G(x)F (x) ∩G(x)F (x) ∩G(x)

H(1)

H(K‖x̃− x‖)

p0p1pK‖x̃−x‖pK‖x̃−x‖pK‖x̃−x‖

Figure 14: Level sets H(z) of ∂
(
F (x) ∩ G(x)

)
containing points pz with maximal distance from

p0 ∈ ∂
(
F (x) ∩G(x)

)
. Clearly, ‖pz − p0‖ = z‖p1 − p0‖.

that is, there exists v ∈ F (x0) ∩G(x0) such that Bε(v) ∩ F (x) ∩G(x) = ∅ for ε > 0
arbitrarily small and x ∈ suppF ∩G arbitrarily close to x0. Since F and G are affine,
this is only possible if NF = −NG, where NF and NG denote the normal vectors to
∂F (x0) and ∂G(x0), respectively, at v. It follows from convexity that this is possible
only if F (x) ∩ G(x) = ∅ for x arbitrarily close to x0, contradicting the fact that
x ∈ suppF ∩G.

Lemma E.2. Let F and G be Lipschitz continuous maps with bounded support taking
values in closed convex polytopes. Denote the outward normal vectors to their hyper-
faces by πFi (x), i ∈ IF and πGi (x), i ∈ IG, respectively. If for any JF ⊆ IF , JG ⊆ IG,
the matrix [(πFj (x))j∈JF , (π

G
j (x))j∈JG ] has constant column rank in a neighbourhood

of x, then F ∩ G is locally Lipschitz continuous at x. If the ranks of above matrices
are constant on the entire support of F ∩G, then F ∩G is Lipschitz continuous.

Proof. Fix x in the support of F ∩ G and let K be the maximum of the Lipschitz
constants of F and G. Then Lipschitz continuity of the individual maps implies that

F (x̃) ∩G(x̃) ⊆
(
F (x) + ‖x̃− x‖BK(0)

)
∩
(
G(x) + ‖x̃− x‖BK(0)

)
.

Observe, however, that the right hand side is larger than F (x)∩G(x)+‖x̃− x‖BK(0).
Let H(z) := ∂

(
F (x) +Bz(0)

)
∩
(
G(x) +Bz(0)

)
be the level sets of ∂

(
F (x) ∩G(x)

)
.

Let p1 denote the point in H(1) with maximal distance from ∂
(
F (x)∩G(x)

)
and let

p0 be the point in ∂
(
F (x) ∩ G(x)

)
with minimal distance from p1 as illustrated in

Figure 14. Let {π1, . . . , πn} be a minimal subset of normal vectors to the hyperfaces
of F (x)∩G(x) that intersect at p0 such that p1 is the unique point in H(1), which is
related to p0 by

πj
>(p1 − p0) = 1 for j = 1, . . . ,m and p1 − p0 ∈ span

j=1,...,m
πj. (15)

By linearity of (15), it follows that pK‖x̃−x‖ := p0 + K‖x̃− x‖(p1 − p0) is a point
in H(K‖x̃− x‖) with maximal distance of F (x) ∩G(x). Its distance from p0 equals
K‖p1 − p0‖‖x̃− x‖. The statement thus follows once we show that ‖p1(x)− p0(x)‖
is uniformly bounded in x.
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By minimality of {π1, . . . , πn}, the vectors π1, . . . , πn are linearly independent.
Thus by assumption, π1(x̃), . . . , πn(x̃) are linearly independent also for x̃ in a neigh-
bourhood of x. Since F and G are continuous, the norm of the solution is continuous,
hence by making the neighbourhood smaller and compact, its maximum is bounded.
Because F and G have finitely many hyperfaces, the finite maximum over all possible
combinations of normal vectors π1, . . . , πñ yields a bound for ‖p1 − p0‖ on a suffi-
ciently small neighbourhood of x. Finally, if the rank is constant on suppF ∩G, then
‖p1 − p0‖ is uniformly bounded since suppF ∩G is compact.

E.2 Bounds on incentives and solutions of the optimality equation

Denote by Φa(N, δ) :=
{
β
∣∣ (β, δ) enforces a and N>β = 0

}
the space of value trans-

fers normal to N that enforce a given value burning δ. Let

Ψa(w,N, r,W) :=

{
δ ∈ R2×|Y |

∣∣∣∣∣ Φa(δ,N) 6= ∅, N>
(
g(a) + δλ(a)− w

)
≥ 0,

w + rδ(y) ∈ W for every y ∈ Y

}
.

Relevant is the optimality equation

κa(w) = max
δ∈Ψa(w,Nw,r,W)

2Nw
>(g(a) + δλ(a)− w

)
r‖φ(a,Nw, δ)‖2 , (16)

where φ(a,Nw, δ) is the shortest vector in Φa(Nw, δ).

Lemma E.3. Let C be a C1 solution to (16) for fixed a, r, and W with endpoints vL,
vR such that the normal vector Nw to C at w is contained in E0

a(r,W)\
(
Γ0
a(r,W)∪P

)
for every w ∈ C. Then there exists a constant K > 0 such that for any α ≥ 0, for
any w ∈ C, any (Twφ + Nwχ, δ) enforcing a with Nw

>(g(a) + δλ(a) − w
)
≥ 0 and

w + rδ(y) ∈ W satisfies

K‖χ‖ ≥
∥∥δ̂1 − δ1

∥∥+
∥∥δ̂2 − δ2

∥∥, 2K + 2α

Ψ̄
‖χ‖ ≥ 1−

(
‖φ‖ − α‖χ‖

)2∥∥φ(a,N, δ̂)∥∥2 , (17)

where δ̂ is the element of Ψa(w,Nw, r,D) that minimizes
∥∥δ̂1 − δ1

∥∥ +
∥∥δ̂2 − δ2

∥∥ and

Ψ̄ := infw∈Cminδ′∈Ψa(w,Nw,r,W) ‖φ(a,Nw, δ
′)‖2 > 0.

Proof. We begin the proof by extending φ(a,N, δ) to δ with Φa(N, δ) = ∅ in a Lip-
schitz continuous way. We achieve this by introducing the function χ(a,N, δ) char-
acterizing the minimal normal component N>β necessary to enforce a given δ, and
setting φ(a,N, δ) equal to the minimal tangential component φ necessary such that(
Tφ+Nχ(a,N, δ), δ

)
enforces a. Observe that this is indeed an extension of φ(a,N, δ)

as χ(a,N, δ) ≡ 0 for δ with Φa(N, δ) 6= ∅.
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Recall that I ia(N, δi) denotes the set of vectors φ ∈ Rd such that (T iφ, δi) satisfies
i’s incentive compatibility constraints for action profile a, where T is (the clockwise)
orthogonal to N . Let d

(
I1
a(N, δ1), I2

a(N, δ2)
)

denote the minimum distance between
the two sets. Since I ia(N, δ) are closed for i = 1, 2, the minimum distance is attained
between two points pi ∈ I ia(N, δi). If the minimal distance is attained for more than
one such pair, let (p1, p2) be the pair that minimizes the norm of

N1/T 1p1 +N2/T 2p2

N1/T 1 +N2/T 2
.

Because changes in N and δ only change the location, but not the direction of the
hyperfaces of I ia(N, δ), p1 and p2 are Lipschitz continuous in (N, δ). Therefore, so are

χ(a,N, δ) :=
p1 − p2

N1/T 1 +N2/T 2
and φ(a,N, δ) :=

N1/T 1p1 +N2/T 2p2

N1/T 1 +N2/T 2
.

This definition indeed minimizes first ‖χ‖ and then ‖φ‖: if (Tφ+Nχ, δ) enforces a,
then φ ∈ I ia(N, δi)−N i/T iχ for i = 1, 2 and hence(

N1

T 1
+
N2

T 2

)
‖χ‖ ≥ d

(
I1
a(N, δ1), I2

a(N, δ2)
)
. (18)

Since χ(a,N, δ) attains the lower bound in (18), its norm is minimal. Minimality
of φ(a,N, δ), given χ(a,N, δ), follows since φ(a,N, δ) is the orthogonal projection of
p1− p2−Nχ(a,N, δ) onto T .

Note that Ψa(w,Nw, r,W) is non-empty for any w ∈ C since (w,Nw) ∈ Ea(r,W)
by assumption. Define the functionD(w, δ) := minx∈Ψa(w,Nw,r,W) ‖x1 − δ1‖+‖x2 − δ2‖
and observe that it is well-defined for any w ∈ C since Ψa(w,Nw, r,W) is non-
empty because (w,Nw) ∈ Ea(r,W) by assumption. Observe also that D is continuous
—as it minimizes a convex function over a convex set—and that it is equal to 0 for
δ ∈ Ψa(w,Nw, r,W), which is precisely the case when I1

a(Nw, δ
1) and I2

a(Nw, δ
2)

overlap. Since a change in δ corresponds to a linear shift of the hyperfaces of
I ia(Nw, δ

i), D(w, δ) is piecewise linear in δ. For fixed w, the rate at which D(w, δ)
changes depends on the angle between the closest hyperfaces of I1

a(Nw, δ
1) and

I2
a(Nw, δ

2). Since changes in δ do not affect these angles and because there are
finitely many hyperfaces, there exists K1(w) with |dD(δ)/dδ| ≥ K1(w) > 0 outside
of Ψa(w,Nw, r,W). Changing Nw corresponds to rescaling the sets I ia(Nw, δ

i) =
1
N iI ia(δ), but since 1

N i ≥ 1, it follows that K1 := minw∈CK1(w) > 0. Therefore,
K1D(w, δ) ≤ d

(
I1
a(Nw, δ

1), I2
a(Nw, δ

2)
)
, which implies by virtue of (18) that

K1

∥∥δ̂1 − δ1
∥∥+K1

∥∥δ̂2 − δ2
∥∥ ≤ sup

w∈C

(
N1
w

T 1
w

+
N2
w

T 2
w

)
‖χ(a,N, δ)‖.
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I1
a(N, δ1)I1
a(N, δ1)I1
a(N, δ1)

I2
a(N, δ2)

φ(a,N, δ)φ(a,N, δ)φ(a,N, δ)

φ

φ+ N2

T 2 χφ+ N2

T 2 χφ+ N2

T 2 χ

φ− N1

T 1 χφ− N1

T 1 χφ+ N1

T 1 χ

d1

d2

p1

p2

Ĩ1
a(N, δ1)Ĩ1
a(N, δ1)Ĩ1
a(N, δ1)

Ĩ2
a(N, δ2)Ĩ2
a(N, δ2)Ĩ2
a(N, δ2)

φ(a,N, δ)φ(a,N, δ)φ(a,N, δ)

θ1

θ2

φ′ q2

q1

Figure 15: The left panel illustrates the position of φ(a,N, δ), p1 and p2 relative to I1a(N, δ1) and
I2a(N, δ2). It also shows that necessarily, di ≤ N i/T i‖χ‖. The right panel shows that θ1 + θ2 = γ
and hence θj ≥ γ/2.

Because Nw is bounded away from coordinate directions ((w,Nw) 6∈ P), the supre-
mum on the right-hand side is finite. Since ‖χ(a,N, δ)‖ ≤ ‖χ‖, this proves the first
inequality of (17) for constant

K =
1

K1

sup
w∈C

(
N1
w

T 1
w

+
N2
w

T 2
w

)
.

The second inequality follows once we show that there exists K3 > 0 with∥∥φ(a,N, δ̂)∥∥− ‖φ‖ ≤ K3D(δ) +K3‖χ‖. (19)

Indeed, the right hand side of (19) is bounded by K3(K + 1)‖χ‖ due to the already
established inequality. Thus,

1− ‖φ‖ − α‖χ‖∥∥φ(a,N, δ̂)∥∥ ≤
∥∥φ(a,N, δ̂)∥∥− ‖φ‖ + α‖χ‖

Ψ̄
≤ K3(K + 1) + α

Ψ̄
‖χ‖. (20)

Observe that Ψ̄ > 0 since NC is bounded away from Γ(r,D) ∪ P by closedness. The
second inequality in (17) then follows from (20) in conjunction with 1−x ≥ 1

2
(1−x2).

It remains to show (19). Suppose first that ‖φ‖ ≥ ‖φ(a,N, δ)‖. Then Lipschitz

continuity of φ implies that ‖φ‖ ≥
∥∥φ(a,N, δ̂)∥∥ − Kφ

∥∥δ̂ − δ
∥∥, which readily im-

plies (19). Suppose therefore that ‖φ‖ < ‖φ(a,N, δ)‖. Let di denote the distance of
φ from I ia(N, δ) for i = 1, 2 and observe that di ≤ N i/T i‖χ‖ as illustrated in the left
panel of Figure 15. Define the auxiliary sets Ĩ ia(N, δi) := I ia(N, δi)−N i/T iχ(a,N, δ)
so that φ(a,N, δ) ∈ Ĩ1

a(N, δ1) ∩ Ĩ2
a(N, δ2) as shown in the right panel of Figure 15.

Let d̃i denote the distance of φ from Ĩ ia(N, δ) and observe that d̃i ≤ di. Let qi for
i = 1, 2 denote the point in ∂Ĩ ia(N, δ) closest to φ and let φ′ be the projection of φ
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φ

q2 φ(a,N, δ)

d̃2 b2

`2

α2

φ(a,N, δ)

q1
q2

φ

α2α2α2
α1

γ

Figure 16: Because q2 is the projection of φ onto ∂Ĩ2a(N, δ2), the angle at q2 in the triangle shown
to the left is at least 90◦. Therefore, d̃2 ≥ b2 = `2 tan(α2) and thus the triangle inequality implies
‖φ(a,N, δ)− φ‖ ≤ d̃2 + `2 ≤ d̃2

(
1 + 1

tan(α2)

)
. The right panel illustrates that αj ≥ θj ≥ γ/2.

onto the plane through φ(a,N, δ), q1 and q2. Let j ∈ {1, 2} be the index i for which
the angle θi between φ(a,N, δ) − φ′ and φ(a,N, δ) − qi is maximal. Then θj ≥ γ/2,
where γ is the angle between φ(a,N, δ)− q1 and φ(a,N, δ)− q2. Let αi be the angles
between φ(a,N, δ)− φ and φ(a,N, δ)− qi and observe that αi ≥ θi. Then

‖φ(a,N, δ)− φ‖ = dj

(
1 +

1

tan(αj)

)
≤
(

1 +
1

tan(γ/2)

)
N j

T j
‖χ‖

as illustrated in Figure 16. Observe that it is impossible for γ to be 0 by the definition
of φ(a,N, δ). Since changes in N and δ do not change the direction of the hyperplanes
bounding Ĩ ia(N, δ), a uniform lower bound γ for γ is given by taking the minimum
over all strictly positive angles between the finitely many hyperfaces of ∂Ĩ1

a(N, δ) and
∂Ĩ2

a(N, δ). Therefore, ‖φ(a,N, δ)− φ‖ ≤ K4‖χ‖ for

K4 =

(
1 +

1

tan(γ/2)

)
sup
w∈C

(
N1
w

T 1
w

+
N2
w

T 2
w

)
.

(19) now follows from the triangle inequality∥∥φ(a,N, δ̂)−φ∥∥ ≤ ∥∥φ(a,N, δ̂)−φ(a,N, δ)
∥∥+‖φ(a,N, δ)− φ‖ ≤ KφD(δ)+K4‖χ‖.

Lemma E.4. Let C be a C1 solution to (9) for fixed r,W oriented by w 7→ Nw such
that NC ∩

(
Γa(r,W) ∪ Ea(r,W) ∪ P

)
= ∅ for some a ∈ A. Then there exists K > 0

such that for any w ∈ C, any pair (Twφ+Nwχ, δ) that enforces a with w+rδ(y) ∈ W
for every y ∈ Y and Nw

>(g(a) + δλ(a)− w
)
≥ 0 satisfies K ≤ ‖χ‖.

Proof. Let (Twφ + Nwχ, δ) enforce a with w + rδ(y) ∈ W for every y ∈ Y and
Nw
>(g(a) + δλ(a) − w

)
≥ 0. The condition (C,NC) ∩ Γ(r,W) = ∅ implies that

Twφ + Nwχ 6= 0. The condition (C,NC) ∩ Ea(r,W) = ∅ implies that χ 6= 0 because
Ψa(w,Nw, r,W) = ∅ for any w ∈ C. This is equivalent to I1

a(Nw, δ) ∩ I2
a(Nw, δ) = ∅,

implying that the two sets I1
a(Nw, δ), I2

a(Nw, δ) are strictly separated since they are
closed. Let d(w, δ) denote the minimal distance between the two sets. Because
Nw is bounded away from coordinate directions, the map (Nw, δ) 7→ I ia(Nw, δ) is
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continuous for i = 1, 2, hence so is d(w, δ). Let Ja(w) denote the set of all δ, for
which there exists β such that (β, δ) enforces a with w + rδ(y) ∈ W for every y ∈ Y
and Nw

>(g(a) + δλ(a) − w
)
≥ 0. Since C is C1, Ja is continuous in w ∈ C. The

minimum of minδ∈Ja(w) d(w, δ) over the compact set C is attained, hence positive.
This implies the statement by virtue of (18).

Lemma E.5. Let ε1 ≤ ε2 and let D1(w) and D2(w) be two affine, convex-, and
compact-valued maps such that there exists ε > 0 with D2(w) ∩ Hε2(N) ⊆ D1(w) ∩
Hε1(N) ⊆ D2(w)∩Hε2(N)+Bε(0) for every w ∈ V and every N ∈ S1. Let (w,N) such
that (12) with

(
ε1, D1(w)

)
and

(
ε2, D2(w)

)
is Lipschitz continuous in a neighbourhood

U of (w,N). Let C1 and C2 be two solutions to (12) with
(
ε1, D1(w)

)
and

(
ε2, D2(w)

)
,

respectively, with initial value (w,N) such that NC1 ,NC2 ⊆ U . Then there exist
constants K1, K2, K3 such that for any v ∈ C1, there exists v′ ∈ C2 with

‖v − v′‖ ≤ K1ε
(
‖v − w‖2 +K2eK3‖v−w‖

)
.

Proof. Let f and h be parametrizations of C1 and C2, respectively, in the direction
of N . Let w be the origin. Then f and h are solutions to

f ′′(x) = F
(
x, f(x), f ′(x)

)
, h′′(x) = H

(
x, h(x), h′(x)

)
(21)

with f(0) = h(0) = 0 and f ′(0) = h′(0) = 0 for Lipschitz continuous F and H with
Lipschitz constants KF and KH , respectively. By Lemma B.1, the right hand side
of (12) is Lipschitz continuous in δ for (v,Nv) ∈ U with some Lipschitz constant K.
The condition that D2(w) ∩Hε2(N) ⊆ D1(w) ∩Hε1(N) ⊆ D2(w) ∩Hε2(N) + Bε(0)
implies 0 ≤ F (x, d, v)−H(x, d, v) ≤ K

√
|Y |ε, hence integrating (21) yields

f ′(x)− h′(x) =

∫ x

0

F
(
t, f(t), f ′(t)

)
−H

(
t, f(t), f ′(t)

)
+H

(
t, f(t), f ′(t)

)
−H

(
t, h(t), h′(t)

)
dt

≤ K
√
|Y |εx+KH

∫ x

0

|f(t)− h(t)|+ |f ′(t)− h′(t)| dt

Since H(x, d, v) ≤ F (x, d, v) in a neighbourhood of 0, we may assume f ′(x) > h′(x)
and f(x) > h(x) by choosing U small enough. Therefore, f−h satisfies the conditions
of Theorem 1.8.1 in Pachpatte [18], which implies that

f ′(x)− h′(x) ≤ K
√
|Y |ε

(
x+KF

∫ x

0

t+
t2

2
+

1

8K3
F

e2KF t dt

)
.

Let c1 = 2KF ∨ 1 and c2 = c1

(
KF + 1/(8K2

F )
)
. Using the inequality t + t2/2 ≤ et,

we obtain f ′(x)− h′(x) ≤ K
√
|Y |ε(x+ c2ec1x). Integrating once yields

f(x)− h(x) ≤ K
√
|Y |ε

(
x2

2
+
c2

c1

ec1x
)
.

For v =
(
x, h(x)

)
, let v′ =

(
x, f(x)

)
, hence the result follows from x ≤ ‖v − w‖.
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