
The xgames package∗

Benjamin Bernard

August 16, 2023

Abstract

This is a game theory package that places emphasis on user-friendly input and coloring each
player’s name, actions, and payoffs in a dedicated color for ease of distinction.

1 Introduction
There are a few options out there to create LATEX renditions of game trees or normal-form games:

• Packages sgamex and egameps by Martin J. Obsorne.

• Package istgame by In-Sung Cho.

• The trees or positioning libraries of TikZ.

What sets this package apart from the above is that it provides an integrated package for writing full
examples, lecture slides, or assignments questions, in which each player’s name, actions, and payoffs are
typeset in a dedicated color for ease of distinction. All commands are overlay aware so that game trees,
normal-form games, belief spaces, and automata can be revealed gradually in class. Moreover, I placed
great emphasis on making the input user-friendly. Finally, there are some gimmicky options like drawing
the players’ payoffs after a payoff matrix has been parsed or displaying the distribution that a strategy
profile induces on a game tree. For a comparison of the different packages’ ease of use, see Section 5.

2 Instructions for the Impatient

2.1 Installation
While you could just copy and paste the style files xgames.sty and fikz.sty into your current working
directory, it is neater to install those style files in a local TeXMF root directory so that they are
accessible in any working directory. To set up a some folder mytexmf as a root directory in MiKTeX,
add it to the list of directories in the settings of the MiKTeX console and copy each package.sty
into the subfolder mytexmf/tex/latex/package/. Specifically, for this package place xgames.sty and
fikz.sty into subfolders mytexmf/tex/latex/xgames/ and mytexmf/tex/latex/fikz/, respectively.

2.2 Reading this Documentation Quickly
This package is built on TikZ and its macros work in any regular tikzpicture environment. For
best use, the package provides dedicated environments matrixgame, beliefspace, gametree, and

∗This file has version number v0.92, last revised on August 16, 2023.

1



automaton that locally redefine some styles and make it easier to customize figures by specifying key-
value pairs for the entire figure. All macros form this package and from TikZ work in any of the
dedicated environments, thereby allowing one to create hybrid figures easily.

For a brief introduction on how to implement normal-form games, belief spaces, extensive-form
games, and automata, have a look at the examples in Section 3. The examples explain a majority of the
package’s functionality at a quick glance. The commands and keys are explained following the example
in which they appear the first time. In order to tweak those examples to your liking, you can check the
full discussion of the commands and their options in Section 4. There is quite a bit of repetition between
Sections 3 and 4. The main goal was to reduce search time rather than to produce a short document.

To get started as quickly as possible, load the package with the nonode option to improve the
compilation speed of game trees by about 10%. With this option, nodes of a game tree are implemented
as a circle-shaped path instead of a full-fledged TikZ node. As a consequence, TikZ paths ending
in such a node will not be shortened, but rather end behind the node’s center. The output of all
commands from this package will look identical with or without the nonode option, but if you intend
to mark up the trees with arrows, for example, you may wish to load the package without this option.
This documentation, in fact, has been typeset with the nonode option.

Error handling is still utterly absent from this package. I apologize for any frustration caused.

3 Examples

3.1 Normal-Form Games and Text Markup

Fig. 1

0, 3, 1 0, 2, 2

2, 1, 4 2, 0, 1

2, 2, 3 0, 1, 2

3, 0, 1 1, 2, 2

L LR R

U U

D D

A B

For Player 1, strategy U is strictly dominated by strategy D. No other pure strategies are iteratively
dominated. The pure strategies that survive IESDS are {D} for Player 1, {L, R} for Player 2, and
{A, D} for Player 3. There are two pure-strategy Nash equilibria (D, L, A) and (D, R, B).

1 \begin{center}
2 \begin{matrixgame}[top={L, R}, left={U, D}, bottom={A, B}]
3 \payoffmatrix{0, 3, 1 & 0, 2, 2\\ 2, \br<3->{1}, \br<4->{4} & 2, 0, 1}
4 \payoffmatrix[pos={5,0}]{2, 2, 3 & 0, 1, 2\\ 3, 0, 1 & 1, \br<3->{2}, \br<4->{2}}
5 \strike<2->{h}{1}
6 \end{matrixgame}
7 \end{center}
8
9 For \pl1, strategy $\pl1{U}$ is strictly dominated by strategy $\pl1{D}$. No other pure

strategies are iteratively dominated. The pure strategies that survive IESDS are
$\plset1{D}$ for \pl1, $\plset2{L, R}$ for \pl2, and $\plset3{A, D}$ for \pl3. There
are two pure-strategy Nash equilibria $\ap{D, L, A}$ and $\ap{D, R, B}$.

↪→

↪→

↪→

The main macro to typeset normal-form games is \payoffmatrix, to which the input is provided
as in a regular tabular environment. The key pos={5,0} offsets the center of the second payoff matrix

2



by (5, 0) in the TikZ coordinate system that underlies the matrixgame environment. Labels provided
as a comma-separated list to the keys top, left, and bottom are added to all payoff matrices of this
matrixgame. The \strike command strikes out a player’s strategy in all payoff matrices. Here, h in
the first argument stands for horizontal. With arguments v and x, strategies of players 2 and 3 can be
struck through. Best responses are highlighted using \br. Both \strike and \br are overlay aware.

The commands \pli for i = 1, . . . , 9 color any text in player i’s color.1 The color palette can be
changed by \setplayercolors or \letplayercolors. For example, the preamble of this file contains
the line \setplayercolors{HTML}{c4a100; 3465a4; 4f9905; cf5c00} to match the “tango” color
scheme of the minted package. Without argument, the command \pli prints player i’s name, which is
“Player i” by default. The commands \plseti for i = 1, . . . , 9 color the elements of a comma-separated
list in player i’s color. Action profiles or payoff vectors can be colored by passing the player’s actions
or payoffs, respectively, as a comma-separated list to \ap (short for action profile).

Fig. 2

2, 3 0, 2

3, 0 1, 1

h ℓ

H

L

(H, h)(H, h)

(H, ℓ)(H, ℓ)

(L, h)(L, h)

(L, ℓ)(L, ℓ)Fi
rm

Customer

A long-lived Firm chooses to exert a (H)igh or a (L)ow amount of effort and the short-lived Customer
chooses to buy a (h)igh-priced or a (ℓ)ow-priced product.

1 \begin{center}
2 \begin{matrixgame}[force math, top={h,\ell}, left={H,L}, player names={Firm,Customer}, br]
3 \payoffmatrix[w=1.3, h=0.75]{2, 3 & 0, 2\\ 3, 0 & 1, 1}
4 \drawpayoffs<2->[scale=0.75, shift={5,-0.8}]
5 \end{matrixgame}
6 \end{center}
7
8 \definevar{H, L; h, \ell}
9 A long-lived \pl1 chooses to exert a ($\H$)igh or a ($\L$)ow amount of effort and the

short-lived \pl2 chooses to buy a ($\h$)igh-priced or a ($\ell$)ow-priced product.↪→

10 \releasevar

The key force math places action labels in all payoff matrices and drawn payoffs in math mode.
The key player names={Firm, Customer} changes the players’ names globally and adds the players’
names to the payoff matrix. When the key br is passed to \payoffmatrix, all best responses are
highlighted automatically with \br, given that payoffs are explicit numbers and there are three
or fewer players. The keys w an h govern the width and height of the cells, respectively. The
command \drawpayoffs draws the pure-action stage game payoffs of a two-player game parsed with
\payoffmatrix as well as their convex hull. The key scale=<factor> scales the drawn image by
<factor> and the key shift={x,y} shifts the origin by (x, y) from the center of the payoff matrix.

Instead of writing \pli{<text>} to refer to player i’s action <text>, one can also define commands
\<text> using \definevar. Players are separated by semicolons and each player’s actions by commas.

1Formally, the macro is a single-argument macro \pl{<num>} that scans for a second argument with a \futurelet
command. We can omit the braces around <num> because it is a single token.

3



If any existing macros are overridden by \definevar, they are restored by \releasevar. Below four
examples show four more ways, with which one can quickly colorize text by players.

If the Agent’s action α ∈ A is observed by the Principal, the Principal can incentivize the Agent to
choose his/her preferred action α∗ by making the payment conditional on the observed action.

1 \setplayernames{Principal, Agent}
2 \definevar[player=2]{\alpha, \A->\mathcal{A}}
3 If the \pl2's action $\alpha \in \A$ is observed by the \pl1, the \pl1 can incentivize the

\pl2 to choose his/her preferred action $\alpha_{\ast}$ by making the payment
conditional on the observed action.

↪→

↪→

4 \releasevar{\alpha, \A}

If the variable to be defined is a command sequence, the content of that command sequence is
typeset in the player’s color. One can set the variable to any arbitrary content with the notation
\variable-><content>. Note that subscripts are absorbed in the color of the variable as it is
interpreted as different instance of the same variable. By setting the key player=<num>, the first
variable is parsed as player <num>’s variable and the player counter increases with each semicolon. In
this instance, the same effect could be achieved by \definevar{; \alpha, \A->\mathcal{A}}. If
one wishes to release only some, but not all variables defined by \definevar, one can pass a comma-
separated list to \releasevar of variables to be released. Doing so is marginally slower than releasing
all variables at once and certain auxiliary macros will not be released (such as \qhat in below example).
It is thus recommended to simply release all variables at once at the end of an example.

Since u′
1(q̂1, q̂2) > 0, Firm 1 has an incentive to deviate and produce a quantity q′

1 > q̂1.

1 \setplayernames{Firm~1, Firm~2}
2 \multivar{u}
3 \multivar[prefix=hat, postfix=']{q}
4 Since $\u1'(\qhat1, \qhat2) > 0$, \pl1 has an incentive to deviate and produce a quantity

$\q1' > \qhat1$.↪→

5 \releasevar

The command \multivar defines macros \<text>i for i = 1, . . . , 9 which typeset <text>_i in
player i’s color. It is possible to refer to different instances of the same variable by setting the prefix
and the postfix keys. The key prefix=<prefix> defines macros \<text><prefix>i, which are
typeset as \<prefix>{<text>}_i. Instead of hat, one could use it to typeset tilde, bar, underline,
mathcal, etc. To denote different instances by superscripts or primes, set the postfix key to ^, ', or
{^,'}, respectively. Contrary to subscripts, superscripts or primes are not absorbed in the player’s
color by default because they could signify powers or derivatives. Again, \releasevar restores any
macros that have been overwritten, including hats, bars, tildes, etc.

The Incumbent and the Challenger choose a campaign budget βI and βC , respectively. The probability
of winning depends on the entire profile β = (βI , βC).

1 \setplayernames{Incumbent, Challenger}
2 \multivar[index=initial]{\beta}
3 The \pl1 and the \pl2 choose a campaign budget $\beta1$ and $\beta2$, respectively. The

probability of winning depends on the entire profile $\beta0 = (\beta1, \beta2)$.↪→

4 \releasevar

4



By passing the key-value pair index=initial to \mutlivar, the player’s actions are indexed by the
first letter of their names instead. By passing player number 0, coloring and subscripts are suppressed.
Alternatively, the same effect could be achieved by declaring \multivar[index=initial]{\b->\beta}
before the example and by writing \beta = (\b1, \b2) in the example.

Players i = 1, 2 choose ai ∈ {Rock, Paper, Scissors}. Player 1’s best response is B1(Rock) = {Paper}.

1 \resetplayernames
2 Both players~$i = \apm{1, 2}$ choose $a_i \in \textset{Rock, Paper, Scissors}$. \pl1's best

response is $\BR[1](\pltext2{Rock}) = \textset1{Paper}$.↪→

3 \releasevar

The players’ names can be reset to default with \resetplayernames. The command \apm colors a
comma-separated list by player colors as displayed in a \payoffmatrix (hence the m in \apm). Actions
and sets of actions that are spelled out, rather than abbreviated by variables, can be typeset with the
commands \pltexti, \textset, and \textseti for i = 1, . . . , 9. The command \BR[i] is intended
for typesetting player i’s best response correspondence.

Fig. 3

0 1

2 −1

A B

A

B

0 1

2 −1

H L

A

B

0 1

2 −1

A B

A

B

1 \matrixsetoptions{w=1.2}
2 \begin{matrixgame}[top left={A, B}]
3 \payoffmatrix{0 & 1 \\ 2 & -1}
4 \end{matrixgame}
5 \matrixsetoptions{single player=nature}
6 \begin{matrixgame}[top={H, L}, left={A, B}]
7 \payoffmatrix{0 & 1 \\ 2 & -1}
8 \end{matrixgame}
9 \begin{matrixgame}[top left={A, B}, zero-sum]

10 \payoffmatrix{0 & 1 \\ 2 & -1}
11 \end{matrixgame}

The key single player determines how the game is colored when payoffs of only a single player are
displayed. Shown above are three matrices for the values default, nature, and zero-sum, respectively.
Those values can be set locally, for a single matrixgame environment or globally through the command
\matrixsetoptions. Alternatively, the colors of the cell entries and labels can be customized with
the color or player keys; see Section 4.5 for further examples.

Fig. 4

−1, 1.5 1, 2

0, 3.5 0, 3

−1, 0 1, 2

0, 2 0, 3

I IN N

E E

N N

u(ϑL, a) u(ϑH , a)

not dominatedEn
tr

an
t

En
tr

an
t

Incumbent Incumbent

5



1 \setplayernames{Entrant, Incumbent}
2 \begin{matrixgame}[name=startup, players, w=1.4, strike width=1.5pt, immediate]
3 \payoffmatrix[w={1.6, 1.2}]{-1, 1.5 & 1, 2 \\ 0, 3.5 & 0, 3}
4 \payoffmatrix[pos={5.5, 0}]{-1, 0 & 1, 2 \\ 0, 2 & 0, 3}
5 \toplabel{I, N}
6 \leftlabel{E, N}
7 \bottomlabel[list sep=;]{$u(\vartheta_L, a)$; $u(\vartheta_H, a)$}
8 \strike<2->[2]{v}{1}
9 \draw<3->[player1, thick, rounded corners=8.5] (3.52, -0.7) rectangle (7.1, -0.1);

10 \node<3->[player1, right, font=\footnotesize] at (7.1, -0.4) {not dominated};
11 \end{matrixgame}

If the labels are passed to the matrixgame as key-value pairs, they are typeset at the end of
the environment to ensure that all payoff matrices have been parsed. Since the \strike and the
\drawpayoffs commands require access to those labels, their output is drawn only at the end of the
environment by default, regardless of when their input is parsed. In order to mark up the image above
any \strikes, we use the immediate key. This key causes the commands \strike and \drawpayoffs
to be typeset as they are parsed. Passing this key necessitates that:

• Top, left, and bottom labels are issued with their separate commands after all payoff matrices
have been parsed and before any \strike or \drawpayoffs commands are issued.

• If the key br is set, it is set for an individual \payoffmatrix of at most two players (because
best responses by player 3 cannot be determined matrix by matrix).

The key immediate is always active in regular tikzpicture environments. Any environments of this
package can be marked up by any TikZ commands such as the \draw and \node commands on lines
9–10. In such commands, player i’s color can be accessed by the color playeri.

The \strike width and many other options can be customized by passing them as environment
options. See Section 4 for a comprehensive list. \strike takes an optional argument <number> if a
strike is to be drawn in only one matrix. If the players’ names have been defined before the matrixgame
environment, such as through \setplayernames{<list of names>} before the center environment
here, you can display those names with the players key instead of setting them again with the player
names key as in Figure 2. Column widths can be adjusted individually with the key w={<list of
widths>}. The key h={<list of heights>} individually adjusts the height of rows.

The command \bottomlabel behaves differently for 2-player and 3-player games. In 2-player
games, \bottomlabel is interpreted as a description of states rather than the actions of a third player.
It is thus unaffected by the force math key, it is typeset in the package foreground color xg-fg by
default, and it is separated slightly further from the \payoffmatrix than player 3’s action labels
would be. In order to attain the same label distance as from payoff matrices in 3-player games, pass
the key tight. The list separator of any label command can be changed with the list sep key. This
is convenient if any of the labels contain a comma, the default separator of lists. If the list sep key is
passed at the environment level, it is changed for all labels, including labels set through key-value pairs.

6



3.2 Payoff Sets

Fig. 5

(E, I)(E, I)

(E, N)(E, N)(N, I)(N, I)

(N, N)(N, N)

(E, N)

(E, I)

(N, N)

(N, I)(N, I)

1 \begin{tikzpicture}
2 \drawpayoffs[name=startup, matrix=2, force math, axis=1.25]
3 \end{tikzpicture}
4 \begin{tikzpicture}
5 \draw[edge, -latex] (-1.3, 0) -- (1.4, 0);
6 \draw[edge, -latex] (0, 0) -- (0, 3.7);
7 \state (EN) at (1, 2) <2->{$\ap{E, N}$};
8 \state[label=260] (EI) at (-1, 0) {$\ap{E, I}$};
9 \state[label=175] (NN) at (0, 3) {$\ap{N, N}$};

10 \state[left, contour=delay] (NI) at (0, 2) {$\ap{N, I}$};
11 \draw[edge] (EN) -- (NN) -- (EI) -- (EN);
12 \end{tikzpicture}

To align payoff sets vertically centered with the matrixgame that defines the payoffs, it is easiest
to draw payoffs in a separate tikzpicture environment rather than in the same matrixgame. You
can store any parsed matrixgame with the option name=<text> and recall it with name=<text> in
\drawpayoffs. The key matrix=<number> determines which \payoffmatrix of the environment is
drawn. Without the name key, the most recent unnamed matrixgame is drawn.2 If payoffs are drawn in
a separate environment, the key force math needs to be re-issued. The key axis=<factor> determines
how far beyond the maximum payoffs the axes extend. Labels of each payoff pair are drawn on the
opposite side of the center of mass among payoff pairs. This will look good in many repeated games we
teach, but in some games (as above) it may not. Labels can be turned off with the key labels=off.

It is not difficult (and instructive) to draw this payoff set manually. The syntax of the \state
command is identical to a TikZ \node with two exceptions: braces are optional if no label is to be set
and a separate overlay instruction <overlay> can be given to the label. The label key determines the
angle in degrees, at which the label is set from the node. The eight standard directions left, above
left, above, etc. are also supported—either as value to the label key or as its own key. The contour
key accentuates the label from the background using the contour package. The contour color is the
package background color xg-bg. You can change the color with any means provided by the xcolor
package. Typically, any \draw command issued after a \state command is drawn on top of the state
and its label. By passing the value delay to the contour key, the label is typeset at the end of the
tikzpicture. This may be convenient because the coordinate can be used already. Lines with the
same line width as the \states can be drawn with the edge TikZ style.

2In this instance, the payoff pairs of the first two players in the second matrix parsed in Figure 1 would be drawn.
Labels, however, would be taken from the product-choice game because they are overwritten.

7



Fig. 6

W
N

u(α)

Eα[γ(Y )]

vv

W

N

u(α)

Eα[γ(Y )]

vv

Uv

1 \halfspacesetoptions{depth=0.3, hatch=0.1}
2 \begin{tikzpicture}
3 \zoom<3->[l={-0.32, -0.32}, u={0.32, 0.32}, scale=6, shift={4.5, -0.1}]{
4 \coordinate (v) at (0, 0);
5 \draw[very thick, player2] ($(v) + (20:-2) + (120:2)$) arc(120:-40:2);
6 \node[player2] at (-1.5, -0.2) {$\mathcal{W}$};
7 \halfspace<2->[w=4, label=0] at (v) dir (20:0.8) {$N$};
8 \state (u) at (1.2, 1.5) {$u(\alpha)$};
9 \state[label=-120] (gamma) at ($1.7*(v) - 0.7*(u)$) {$\mathbb{E}_{\alpha}[\gamma(Y)]$};

10 \draw[thick, dashed] (gamma) -- (u);
11 \draw<4->[thick] (v) circle (2mm);
12 \state[contour, label=-30] at (v) {$v$};
13 }{
14 \node at ($(v) + (-35:2.6mm)$) {$\mathcal{U}_v$};
15 }
16 \end{tikzpicture}

The lower half-space through <coord> with normal vector <normal> is visualized with the command
\halfspace«overlay»[<options>] at (<coord>) dir (<normal>) {<label text>};, where both
<coord> and <normal> can be any TikZ coordinates. The normal vector is labeled by <label text> in
the direction <dir> specified by the key-value pair label=<dir>. If <normal> consists only of an angle,
rather than a polar coordinate, the normal vector is suppressed. The keys w and depth specify the width
and the depth, respectively, of the half-space and the key hatch specifies the distance between two
lines of the hatching pattern. The keys can be set globally with the \halfspacesetoptions command.

The command \zoom«overlay»[<options>]{<figure>}{<markup>} displays both the <figure>
and a zoom-in of it, in which the zoomed-in part is marked up by <markup>. The zoom-in is shown only
on the slides specified by <overlay>. The keys l={<x>,<y>} and u={<x>,<y>} specify the lower left
and the upper right corner of the rectangular area that is zoomed in by a factor of scale=<factor>.
Finally, they key shift={<x>,<y>} shifts the center of the zoomed-in part by (<x>,<y>) in the non-
zoomed-in coordinate system. Note that the size of nodes, the density of the hatching pattern, or the
length of the visual representation of the normal vector are unaffected by the zoom.

The \zoom command is incompatible with any delay options. Because coordinates are defined
both in the entire figure and the zoom-in, any delayed commands are executed only in one of the
coordinate systems. The original coordinates are restored after the \zoom command (and hence any
delayed features will be missing from the zoom-in). Because delayed features are not supported, the
nonode package option is locally disabled within a \zoom command.

8



3.3 Belief Spaces

Fig. 7
ωR,H

ωR,D

ωN,H

ωN,D

ϑR ϑN

τRτR

τNτN
1
4
1
4

1
4
1
4

1
4
1
4

1
4
1
4

τ1τ1 τ2τ2

τ3τ3 τ4τ4

1 \begin{beliefspace}[radius={3.2mm, 3.9mm}, event=4.6mm, right=-1pt]
2 \foreach[count=\i] \x in {R, N} {\foreach[count=\j] \y in {H, D} {
3 \pgfmathtruncatemacro{\k}{(\j-1)*2+\i}
4 \state (w\k) at (2.2*\i, -1.4*\j) {$\omega_{\x, \y}$};
5 }}
6 \event (w1) -- (w3) {$\vartheta_R$};
7 \event (w2) -- (w4) {$\vartheta_N$};
8 \informset<3->[player=2, label=30, contour] (w4) -- (w3) -- (w1) -- (w3) {$\tau_R$};
9 \informset<3->[label=30, contour] (w2) {$\tau_N$};

10 \xforeach \i in {1, ..., 4} {
11 \informset<2->[player=1, label=-30, contour=delay] (w\i) {$\tau_{\i}$};
12 \informlabel<4->[contour] (180:1) at (w\i) {$\frac{1}{4}$};
13 }
14 \end{beliefspace}

The two main commands in a beliefspace environment are \state, to denote states of the world,
and \informset, to indicate information sets or events. The command \event is just a shorthand
for \informset[player=0]. All three commands are overlay aware. The \state command is as
described before, except that the label is always set to the right within a beliefspace environment.
This ensures that information sets can be drawn nicely around the state and its label. The necessary
width of information sets is measured automatically. However, because bounding boxes are rectangular
but letters are not, some manual adjustment may be necessary. The key-value pairs left=<dimen>
and right=<dimen>, respectively, add <dimen> to the left and right of the measured width.

The \informset command takes a list of states, nodes, or coordinates in counterclockwise order,
separated by --, and draws an information set around those states with radius specified by the radius
key of either the beliefspace environment or the \informset command. It is possible to pass by
the same state multiple times as on line 8 to display non-convex information sets. The first state,
however, has to be a state on the boundary of the convex hull. If the radius key is passed to the
beliefspace environment, the radius key takes a comma-separated list of radii for the different
players. The event key sets the radius of player 0 (nature). The key player=i of the \informset
commands sets the active player to player i, which sets the default radius and color of the current and
future information sets those of player i. A label can be provided to information sets within braces
after the last coordinate, and it can be placed by the label key. For non-singleton information sets,
the default position is in the center of the information set. For singleton information sets, the default
position is to the right of the information set. If a label direction is provided, it is offset at that angle
from the first state appearing within the \informset command.

Additional labels can be added to states with \informlabel. The offset 180:1 causes the label to
be placed to the left of (w\i) at the radius of player 1. Alternatively, the offset can be specified as a

9



regular polar coordinate <direction>:<dimen> or as the triple <direction>:<player>:<dimen>. In
the latter case, the label’s anchor is placed at the radius of player <player> plus <dimen>.

Fig. 8

ωbbb

ωrbb ωrrb

ωbrb

ωbrrωbbr

ωrbr

1 \informsetradius{4mm, 5mm, 6mm}
2 \begin{beliefspace}[center, font=\large]
3 \state (w0) at (0, 0) {$\omega_{\apm[]{b,b,b}}$};
4 \xforeach[count=\i] \x in {{r,b,b},{r,r,b},{b,r,b},{b,r,r},{b,b,r},{r,b,r}} {
5 \state (w\i) at (180-60*\i:2.7 and 1.8) {$\omega_{\noexpand\apm[]{\x}}$};
6 }
7 \foreach \i in {1, 2, 3} {
8 \pgfmathtruncatemacro{\idx}{2*\i-1}
9 \informset[player=\i] (w\idx) -- (w0);

10 \pgfmathtruncatemacro{\j}{Mod(2*\i+1,6)+1}
11 \informset (w\j);
12 \foreach \s in {+, -} {
13 \pgfmathtruncatemacro{\j}{Mod(\idx\s1-1,6)+1}
14 \pgfmathtruncatemacro{\k}{Mod(\idx\s2-1,6)+1}
15 \informset (w\j) -- (w\k);
16 }}
17 \end{beliefspace}

Instead of specifying the radii of the players’ information sets in each beliefspace environment,
one can set them globally with the \informsetradius command. If labels are unequally long, they can
be centered horizontally within the information sets with the center key. Doing so requires measuring
the widths of all labels, hence typesetting the labels is postponed until the end of the environment. To
ensure that values of the running variables in the for loops are retained, the package provides a version
\xforeach of pgffor’s \foreach, within which each label is fully expanded. Without the expansion, all
labels would be set to ωrbr since \x is equal to {r,b,r} at the end. Within an \xforeach loop, each
non-expandable macro that appears in a label (such as \apm here) needs to be protected by immediately
preceding it with a \noexpand.3 Alternatively, one can directly pass the length of the widest label
with the key-value pair center=<dimen> and use a \foreach loop. Finally, the optional argument
<sep> of \apm indicates with which separator <sep> the attributes of the different players are typeset.

Fig. 9
ω0 ω1 ω2 ω2k−1 ω2k

3Roughly speaking, any macro that directly produces a legible character is expandable, such as Greek letters, \int,
\oplus, etc. Non-expandable macros are procedural commands that change instructions on how something is typeset,
such as \frac, \mathcal, \color, or \apm in this example.

10



1 \begin{beliefspace}[identical width=false]
2 \foreach \i in {0, 1, 2} {\state (w\i) at (1.7*\i, 0) {$\omega_{\i}$};}
3 \foreach \i/\x in {3/2k-1, 4/2k} {\state (w\i) at (2.2*\i-1, 0) {$\omega_{\x}$};}
4 \coord (w5) at (9.5, 0);
5 \informset[player=1] (w0);
6 \informset (w1) -- (w2);
7 \informset (w3) -- (w4);
8 \informset[player=2] (w0) -- (w1);
9 \informset (w2) .. (w3);

10 \informset (w4) -. (w5);
11 \end{beliefspace}

A countably infinite belief space can be drawn by separating coordinates with .., -., or .- instead
of --. In the first case, the center portion of the information set is dashed. In the latter two cases, a
“trailing off” pattern is drawn towards the side with the dot. One of the bounding semi-circles is not
drawn, but the information sets are otherwise of the same size. Here, the half-open information set
is drawn around coordinate (w5), which is defined using the command \coord. It is similar to the
TikZ-native \coordinate, but additionally takes care of background behavior needed in belief spaces.

By default, information sets are drawn as if the labels of all states had the same width. This
creates a uniform look if the states appear in a grid, but it may look odd if the labels of some states
are much longer than those of other states. This behavior can be turned off with the key identical
width=false. This option is currently only supported if all states are in a horizontal line.

1 \begin{beliefspace}[state=false]
2 \stategrid[enum=grid]{1 & 3 & 2\\ 3 & 1 & 2\\ 2 & 2 & 1}
3 \foreach \i in {1, 2, 3} {
4 \informset[player=1] (w\i1) -- (w\i3);
5 \informset[player=2] (w1\i) -- (w3\i);
6 }
7 \end{beliefspace}

Fig. 10
1 3 2

3 1 2

2 2 1

A rectangular grid of states can be initialized with the \stategrid command, whose argument is
formatted as in a tabular environment. The key enum=grid assigns coordinate (w<row><col>) to
the state in row <row> and column <col>. Without this key-value pair, the coordinates are labeled
consecutively from (w1) to (w9) instead. If the state key at the environment level is set to false,
the state is represented directly with its label rather than through a circular node.

Fig. 11
[h1] [h2] [h3]

[h4] [h5] [h6]

[h7] [h8] [h9]

markup

1 \begin{beliefspace}[event=5.8mm, state=false]
2 \stategrid[name=h, h=1.7, v=1.2, autolabel=$\lbrack h_{\enum}\rbrack$]{3\\ 3\\ 3}
3 \foreach \i/\j in {1/4, 2/5, 3/9, 7/8} {\informset[player=1] (h\i) -- (h\j);}

11



4 \informset[player=2] (h1) -- (h7);
5 \informset (h2) -- (h5) -- (h2) -- (h3);
6 \informset (h6) -- (h9);
7 \informset (h8);
8 \event[line=dashed, sticky] (h1) -- (h7) -- (h8) -- (h7);
9 \event (h2) -- (h5) -- (h6) -- (h9) -- (h3);

10 \draw[thick, latex-] (h3) -- ++(1.3, 0) node[right] {markup};
11 \end{beliefspace}

The key name=h assigns coordinates (h1) through (h9) to the states in the grid. The keys h and
v determine the horizontal and vertical spacing, respectively. The states are labeled automatically
through the autolabel key. The macro \enum is replaced with the index of the coordinate (which is
<row>, <col> if the enum key is set to grid instead).4 When the autolabel key is set, the mandatory
argument of \stategrid specifies the number of states in each row, separated by \\.

Fig. 12

ω1 ω2 ω3 ω4

ω5 ω6 ω7

A1

A2

B1 B2C1 C2

1 \begin{beliefspace}
2 \stategrid[h=2.2, v=1.4, autolabel=$\omega_{\enum}$]{4\\ 3}
3 \informset[player=1] (w1) -- (w4) {$A_1$};
4 \informset[label=0.8] (w5) -- (w7) {$A_2$};
5 \informset[player=2] (w1) -- (w5) -- (w6) -- (w2) {$B_1$};
6 \informset[label=square] (w3) -- (w7) -- (w4) {$B_2$};
7 \informset[player=3] (w5) -- (w1) -- (w5) ~~ (w7) -- (w3) -- (w7) {$C_1$};
8 \informset (w2) -- (w6) -- (w2) ~^~ (w4) {$C_2$};
9 \end{beliefspace}

By default, the label of an information set is placed at the barycenter of the coordinates in the
information set. If a value <value> between 0 and 1 is passed to the label key, the label is placed at a
fraction <value> of the way from the first coordinate to the last coordinate. If the value square is passed
to the label key, the label is placed in the middle between the highest and lowest x- and y-coordinates.

Information sets containing a disjointed set of states can be drawn with the separator ~~. By
default, disjointed sets of states are connected by an arc. See Figure 34 for the same figure with the
alternative exterior=extend option. Note that the coordinate list will contain duplicate coordinates
at points of non-convexity as it is the case in Figure 7. The default label placement for such information
sets is square in the first connected set of states. With the separator ~~, the arc is drawn opposite
the previous/next coordinate in the list, i.e., opposite of (w1) at (w5) and opposite of (w3) at (w7).
This requires that each connected set of states contains at least two states. For singleton states, you
must provide the direction of the extension manually with ~^~, ~v~, ~<~, and ~>~ for the arc to be
drawn above, below, to the left, and to the right, respectively.

4I use \lbrack and \rbrack instead of [ and ] here because nested brackets pose issues both for parsing optional
arguments and the minted package, which is used to color the code snippets in this documentation.

12



3.4 Extensive-Form Games
Fig. 13

G B

Waiter

T

2, 2

N

−1, 3

Client

T

−1, 3

N

0, 0

Client

1 \begin{gametree}[player names={Waiter, Client}]
2 \branch[player=1, root=w] from (0, 0) to[h=2.6, v=1] {G; B<3->};
3 \branch[player=2, label=130] from (w1) to[h=1.3] {T(2,2); N<2->(-1,3)};
4 \branch[label=50] from (w2) to {T(3,-1); N<2->(0,0)};
5 \end{gametree}

We can draw game trees in the gametree environment by using the \branch command with syntax
\branch«overlay»[<opt>] from (<parent>) to[<edge opt>] {<list of children>}; The key
player=i labels the parent of the branch with player i’s name and causes the action labels, the
parent’s interior, and any highlighted actions to be colored in player i’s color. The key root=<name>
defines a coordinate (<name>) at the parent node. The root key must be set if (<parent>) is not
a named coordinate. The key label=<angle> places the center of the label at angle <angle>.5 In
this tree, the key v determines the vertical offset of the children from the parent node and the key h
determines the horizontal distance between children. Both values are stored until overridden. The
list of children is provided as a semi-colon-separated list, where each child node is described with the
syntax <action>«highlight»[<child opt>](<payoffs>). Here, <action> is the label of the edge
in the tree, <highlight> is an overlay specification, causing the edge to be highlighted in player i’s
color on the specified slides, <child opt> allows fine-tuning of individual edges and their labels,
and <payoffs> will generate a terminal node with label \ap{<payoffs>} if <payoffs> is a comma-
separated list and label <payoffs> otherwise. By default, a coordinate (<parent>i) is defined at the
position of child i in the list, which can be used as the parent of future \branches.

Fig. 14

HotelS

Bad Neighborhood

E

Home

SS EE

1 \begin{gametree}[index=action, nodes=clear]
2 \branch[player=1, root=w] from (0, 0) to[h=3, v=1, contour=delay] {S; E(Hotel)};
3 \branch from (wS) to {S(Bad Neighborhood); E(Home)};
4 \informset[label=none] (w) -- (wS);
5 \end{gametree}

With the key index=action, the coordinate at child i’s location is called (<parent><action i>)
instead of (<parent>i). This works only if <action> is plain text, not if it contains any Greek letters,
any macros, or any other tokens not allowed in TikZ coordinate names. The key nodes=clear is

5This is the default placement algorithm center. You can select placement algorithms simple and box with the key
label placement at the \branch level or with the key node label placement at the environment level.

13



shorthand for nodes=empty and node labels=none, which suppresses coloring and labeling of any
non-terminal nodes in the tree; see below example for a full description of the nodes key. The contour
key draws a contour around the labels of the edges using the contour package. With the value
contour=delay, the edge labels are drawn at the end of the tikzpicture. This is convenient in this
instance because the \branch command defines the coordinates around which \informset is placed,
hence it has to appear before the \informset command.

Fig. 15
L

2, 3

1

M
R

ℓ

3, 2

r

0, 0

ℓ

1, 1

r
2

λ

3, 1

ρ

1, 5

1

1 \treesetoptions{labels=short, force math, path=arrow}
2 \begin{gametree}[scale=1.1, nodes=full, root=hollow]
3 \branch[player=1, root=w, payoffs=186] from (0, 0) to[v=-0.4, h=-2] {L<1->(2,3)};
4 \branch from (w) to[v=1, h=2] {M[l,0.4]; R};
5 \branch[player=2, label=none] from (w2) to[h=1] {\ell<1->(3,2); r(0,0)};
6 \branch[offset={0.35,0}] from (w3) to[v={1,0.3}, h=1.7] {\ell<1->(1,1); r};
7 \informset[curved=15] (w2) -- (w3);
8 \branch[player=1] from (w32) to[v=1, h=1] {\lambda<1->(3,1); \rho(1,5)};
9 \end{gametree}

The key labels=short abbreviates player labels of nodes and information sets to the player number.
The key force math puts all edge labels into math mode. The key path=arrow highlights chosen
actions with arrows. Since all three keys are passed to \treesetoptions, those will be the default
values for all future gametree environments. If the keys were passed to the environment instead, their
values would be the default only for that gametree. The key scale=1.1 is passed to the underlying
TikZ image and scales the entire environment by a factor of 1.1.

The nodes=full key changes the style of non-terminal nodes in the tree so that their outlines
are colored with the active player’s color as well. Other admissible node styles are default, empty,
and hollow. Those styles can be passed to the node key of an individual \branch to stylize only the
parent node of that branch. The root of the tree can be stylized separately by setting the root key
globally or at the environment level.6 Note that the root key serves a different purpose at the branch
and at the environment level. To reset separate styling of the root, use root=clear globally or at the
environment level. Node styles are overlay aware; see Figure 19 for an example.

By default, children are aligned symmetrically about the parent node. There are two ways to draw
asymmetric branches. The first method is to simply use two \branch commands as on lines 3–4 of the
code. Note that the root key need not be repeated. The behavior of keys v and h is special if a branch
contains only a single child. Then the child is simply offset by (v,h) from the parent node. The
second method is to provide comma-separated lists to the v and h keys. For such input, the vertical
offset of the children from the parent node and the horizontal distance between children, respectively,
cycles through these lists. In a vertically oriented tree, the children are horizontally centered about an
offset from the parent node, which can be set with the key-value pair offset={<x>,<y>}.

6The main purpose of root key is to set the root style globally by passing it to \treesetoptions. In this example—
for an individual gametree—the same effect can be achieved by passing the node=hollow key to the root \branch.

14



With the key payoffs=<angle>, the payoff labels of terminal payoffs from this branch are set at
an angle <angle>. The options [l,0.4] passed to action label M cause the label to be placed 90◦

counterclockwise offset at 40% of the way from parent to child. l here stands for “left in the direction
from parent to child” and key r would place the label on the “right side in the direction from parent to
child”. The key curved=<curv> of the \informset command causes an information set to be drawn
as a dashed line with curvature <curv>. The default curvature is 20. A piecewise straight dashed
line connecting all nodes in the information set can be obtained with the dashed key. The default
placement of the label of a dashed information set is above left the first node in the information
set. To avoid duplicate placement of labels from nodes, we set the key label=none on line 5, which
remains active until the active player changes by the next invocation of the player key.

Fig. 16T (1, 1)

B

1 t (0, 2)

b

τ (0, 3)

β (2, 0)

22
11

1 \begin{gametree}[horizontal, terminal=p, subgame={depth=9.3mm}, alert width=2pt]
2 \branch[player=1, root=w] from (0,0) to[v=1, h=2] {T<4->(1,1); B};
3 \branch[player=2, label=225, contour=delay, very sticky] from (w2) to {t<3->(0,2); b};
4 \branch[player=1] from (w22) to {\tau(0,3); \beta<2->(2,0)};
5 \subgame<2->[inner sep=2.7ex, w=0.62] at (w22);
6 \subgame<3->[inner sep=3.2ex] at (w2);
7 \end{gametree}

The key horizontal orients the tree horizontally and switches the behavior of h and v. The key
terminal=p adds parentheses around the terminal payoffs. The key alert width governs the width
of the highlighted edges and, with them, the size of the arrow heads. Subgames can be added to the
game tree with the syntax \subgame«overlay»[<options>] at (<coord>) {<label>}; after all the
branches of that specific subgame have been typeset. In order to get a visual separation between the
nested subgames, we slightly reduce and increase, respectively, the inner sep of the inner and outer
subgame from the default value of 3ex. In order for β to lie fully within the subgame, we make its
shape wider with the key w=<factor>. For <factor> equal to 0 and 1, respectively, the shape is a
triangle and (a poor Bézier approximation of) half an ellipse. The default <factor> is 0.6. The depth
of the subgame (how much it extends beyond the terminal nodes) is set so that subgames include the
labels of terminal nodes in vertically oriented trees. Since those labels are not stored, we set the depth
key manually for horizontal trees. To set it simultaneously for all subgames, we can either set the
subgame key to depth=<dimen> at the environment level or we can set it globally with the command
\subgamesetoptions. The very sticky key makes options label=225 and contour=delay sticky
until the end of the figure. If we used the sticky key instead, those options would remain active
only until the next change of the active player through the player key. Note that labels=short and
force math are still active since they were set globally by \treesetoptions.

Fig. 17

S

1, 0

C
x1

S

0, 3

C
x2

S

3, 2

C
x3

S

2, 4

C
x4

S

99, 98

C
x99

S

98, 100

C 101, 99
x100

15



1 \begin{gametree}[index=action, xscale=1.5, node autolabel=$x_{\enum}$]
2 \branch[root=w, player=1, offset={0.5,0}, sticky] from (0,0) to[v={1,0},h=1] {S(1,0); C};
3 \branch[player=2] from (wC) to {S(0, 3); C};
4 \branch[player=1] from (wCC) to {S(3, 2); C};
5 \branch[player=2, offset={0.8,0}] from (wCCC) to[h=1.6] {S(2, 4); C[etc]};
6 \branch[player=1, offset={0.5,0}, label text=$x_{99}$] from (wCCCC) to[h=1] {S(99,98);C};
7 \branch[player=2, label text=$x_{100}$] from (wCCCCC) to {S(98, 100); C[0](101, 99)};
8 \end{gametree}

Even though this game tree looks as if it was horizontal, it is easier to typeset in vertical
orientation so that payoffs are placed below the terminal nodes by default. The different vertical
distance of the children is again handled by providing a comma-separated list to the v key and
correcting for horizontal alignment with the offset key. Specifically, each child is shifted from its
default placement by offset={0.5,0}. Because we need the same offset for most branches, we make
it sticky. By providing the etc option to a child, the center half of the branch is dashed to indicate
a repeating pattern. Finally, the terminal payoffs of the last node are set to the right because the 0
in C[0] specifies the angle at which the terminal payoffs are set. Note that this option is overloaded:
only numbers outside (0, 1) are interpreted as the angle of terminal payoffs, whereas a number within
(0, 1) is used to specify the position of the edge label; see Figure 15.

Nodes are scale and shear invariant: they are displayed as circles of the same size even though
the gametree environment is stretched by a factor of 1.5 in the x-direction by the xscale key. Any
environment can be stretched in the y-direction with the yscale key. The node autolabel key provides
an automated way of consecutively labeling nodes, where \enum is replaced by a counter that is
increased by 1 for each node. A similar effect can be achieved by passing the autolabel key to
a \branch, in which case automated labeling starts with the parent of that branch. Auto-labeling
supports player-specific counters; see Figure 19 below for an example. The auto-labeling is overridden
by providing a label text explicitly as on lines 6 and 7 of the code.

Fig. 18
ϑB ϑT

Nature

pp

B

p − c, ϑB − p

N

0, 0

CustomersCustomers
pp

B

p − c, ϑT − p

N

0, 0

CustomersCustomers

Airline

1 \begin{gametree}[player names={Airline, Customers}, nodes=hollow]
2 \branch[root=w] from (0, 0) to[v=0.7, h=4] {\vartheta_B; \vartheta_T};
3 \foreach[count=\i] \t in {B, T} {
4 \branch[player=1,label=none] from (w\i) to[arc=230:310:1.6] {290:p[r]};
5 \branch[player=2,label=10] from (w\i1) to[v=1,h=1.8] {B(p-c,\vartheta_{\t}-p); N(0,0)};
6 }
7 \informset[player=1] (w1) -- (w2);
8 \end{gametree}

16



If player names are explicitly provided to the gametree, the key labels=long is set locally for
this tree. A branch with a continuum of actions is typeset with arc=<angle 1>:<angle 2>:<radius>
as in a regular TikZ arc. Individual actions are added to a continuum branch by preceding the action
label with <angle>: or <angle>:<radius>: if the radius is to be different from the arc’s. By default,
an arc issues a contour for any action labels as well as the label of the next \branch’s parent node.

Fig. 19

ϑA ϑB
NatureNature

C

B

Player 1

C

B

Player 1

C

p, 0

F

p, 0

C

0, p

F

p, 0

C

p + b, −b

F

p, 0

C

−b, p + b

F

p, 0

Player 2

Player 2

1 \resetplayernames
2 \begin{gametree}[labels=long, inform=base line]
3 \branch[root=w] from (0,0) to[v=0,h=4] {\vartheta_A; \vartheta_B};
4 \branch[player=1, horizontal] from (w1) to[v=2.4,h=0] {C; B};
5 \branch[horizontal, label=right] from (w2) to {C[r]; B[l]};
6 \branch[player=2, node=clear] from (w11) to[v=-1.1,h=1.6] {C[0.6](p, 0); F[0.68](p, 0)};
7 \branch from (w21) to {C[0.68](0, p); F[0.6](p, 0)};
8 \branch from (w12) to[v=1.1] {C[0.6](p+b, -b); F[0.68](p, 0)};
9 \branch from (w22) to {C[0.68](-b, p+b); F[0.6](p, 0)};

10 \foreach \i in {1, 2} {\informset (w1\i) -- (w2\i);}
11 \end{gametree}

No game theory package documentation is complete without an example of a signaling game. By
passing the horizontal key to individual branches, the orientation can be changed locally, allowing
the tree to grow in arbitrary directions. Similar to the label key, the node=clear key remains active
until the active player changes through an invocation of the player key. Because of the width of the
information sets, we shift action labels closer to terminal payoffs with options [0.6] and [0.68]. The
command \resetplayernames resets the player’s names to Player 1, Player 2, etc. With the inform
key, any keys can be passed to information sets within this game tree, such as the base line key here.
The base line key aligns Player 2 properly within the information sets.

Fig. 20.a
In Out

1, 0

11

L R

2

L

2, 0

R

0, 1

L

0, 2

R

1, 0

1

Fig. 20.b
In

2
3 , 2

3

Out

1, 0

11

1, 2

17



1 \begin{center}
2 \begin{gametree}[force math=false, nodes=full]
3 \branch[player=1, root=w] from (0,0) to[v=0.7, h=2.8, pos=0.42] {In; Out<3->(1, 0)};
4 \branch<1,4->[player=2, alt=({\frac{2}{3}, \frac{2}{3}})] from (w1) to[v=1, h=2] {L; R};
5 \branch<1,4->[player=1, label=none, sticky] from (w11) to[h=1] {L(2, 0); R(0, 1)};
6 \branch<1,4-> from (w12) to {L(0, 2); R(1, 0)};
7 \informset<1,4->[dashed] (w11) -- (w12);
8 \end{gametree}
9 \end{center}

The alt key specifies that the branch starting at player 2’s node is replaced with the terminal node
2
3 , 2

3 on those overlays, on which the branch is not drawn. If the alt key is not specified, nothing is
drawn. Shown above are overlays 1 and 3 produced by the code. The option pos=0.42 sets the default
edge label placement at 42% of the way from parent to children.

Fig. 21.aNN Fig. 21.bNN
1

2 2

1

2 2

Fig. 21.c
L R

NN

L R

1

L R

2
L R

2 L R

1

L R

2
L R

2

Fig. 21.d
L R

NN

L R

I1
2

L R L R

L R

I2
2

L R L R

I1
1

1 \begin{gametree}[node labels=<2->, edge labels=<3->, nodes={<1,4->clear}, inform
autolabel=$\noexpand\mathcal{I}_{\pl}^{\enum}$]↪→

2 \branch[root=w, node=<2->] from (0,0) to[v=0.8, h=4] {L; R};
3 \foreach \i in {1, 2} {
4 \branch[player=1] from (w\i) to[v=1.1, h=2] {L[0.46+0.1*\i]; R[0.76-0.1*\i]};
5 \informset<4->[player=2] (w\i1) -- (w\i2);
6 \foreach \j in {1, 2} {
7 \branch[label=240-100*\j] from (w\i\j) to[h=1, pos=0.62] {L(); R()};
8 }}
9 \informset<4->[player=1] (w1) -- (w2);

10 \end{gametree}

The game tree is gradually built up by providing overlay specifications to the environment keys node
labels, edge labels, and nodes, as well as the \informset commands. Those specifications can
be locally overridden: the key node=<2-> in the root \branch, which is short for node=<2->default,
ensures that the root is labeled even on overlays 4–, on which the key nodes={<1,4->clear} removes
labels from all non-terminal nodes. Since key-value pairs are parsed as a comma-separated list, any
commas within an overlay specification have to be hidden from the key-value parser by encapsulating

18



the entire value with braces. Terminal nodes without payoffs are produced with an empty pair of
parentheses (). Angles provided to the label key and positioning of edge labels are parsed with pgf’s
\pgfmathparse so any formulas are evaluated correctly.

With the key inform autolabel=<code>, information sets in the tree are labeled automatically
according to the code provided. The \pl key is locally replaced with the active player’s number and
\enum is replaced by a counter that is increased for each information set. If <code> contains the macro
\pl, player-specific counters are used in \enum, whereas a global counter is used if \pl does not appear
in <code>. Automated labeling requires that <code> is expanded once so \pl and \enum are replaced
with the correct values. This necessitates that any unexpandable macros (such as \mathcal here)
are protected with a \noexpand; see also Footnote 3. A similar effect can be achieved by passing the
autolabel key to an \informset, in which case automated labeling starts with that information set.

Fig. 22

0

4
15

2
15

2
5

1
5

0

1 \begin{gametree}[labels=none]
2 \branch[player=1, root=w] from (0, 0) to[v=-0.2, h=-2.8] {L()};
3 \branch from (w) to[v=1, h=2.8] {M; R};
4 \branch[player=2] from (w2) to[h=1.4] {\ell(); r()};
5 \branch[offset={0.15,0}] from (w3) to[v={1,0.6}, h=1.7] {\ell(); r};
6 \informset[curved=15] (w2) -- (w3);
7 \branch[player=1] from (w32) to[v=1, h=1.2] {\lambda(); \rho()};
8 \strategy<2->[prob=2, show terminal=<3->frac]{0, 0.4; 1 & 2/3}
9 \end{gametree}

The probability distribution induced by a strategy profile can be visualized with the \strategy
command. In its input, the players’ strategies are separated by an ampersand, each player’s information
sets are separated by a semicolon, and the probabilities of each pure action within the information
sets are separated by commas. The order of information sets and pure actions has to coincide with
the order in which they were defined in the \branch commands.7 The probability of the last pure
action within each information set is not provided as an input since it is redundant. Any mathematical
expressions that can be parsed by \pgfmathparse (such as fractions) are allowable as input. The
\strategy command also allows input ordered by information sets rather than ordered by players.
The above strategy profile could have been parametrized by \strategy{0, 0.4; 2/3; 1} as well.

The key prob=<float> indicates that one unit of probability is displayed with vertical height
<float>. The default value is prob=0, for which the result looks as if the edges were highlighted
directly with an overlay command. The key show terminal displays the resulting probabilities of
each terminal node. Its optional values indicate an overlay specification for the terminal probabilities

7For non-singleton information sets, it is relevant at which point the first node in the information set was drawn,
regardless of when the \informset command was issued.

19



as well as the option frac, which converts the output into fractions. One caveat to the \strategy
command is that, currently, it is not compatible with the gametree option index=action.

Fig. 23.a
0.40.4

0.60.6

11
0.40.4

0.60.6

0.330.33
0.670.67

0.40.4 0.60.611

0.80.8 0.20.2
110.60.6 0.40.40.60.6 0.40.4

11

Fig. 23.b

1 \begin{gametree}[labels=none]
2 \branch[root=w] from (0, 0) to[v=0.7, h=5.6] {A; B};
3 \foreach \i in {1, 2} {\branch[player=1] from (w\i) to[h=2.8] {A; B};}
4 \foreach \i in {11, 12, 22} {\branch[player=2] from (w\i) to[h=1.4] {A; B};}
5 \branch[player=3] from (w21) to[h=1.4] {A; B};
6 \foreach \i in {111, 112, 221, 222} {\branch[player=1] from (w\i) to[h=0.7] {A(); B()};}
7 \foreach \i in {211, 212} {\branch[player=2] from (w\i) to[h=0.7] {A(); B()};}
8 \foreach \i in {121, 122} {\branch[player=3] from (w\i) to[h=0.7] {A(); B()};}
9 \strategy<1>[prob=2, show prob=path]{0.4 & 0; 0.4; 0; 1; 0.8; 0 & 0.5; 1/3; 0.4; 0.2; 0.6

& 0; 0.6; 1}↪→

10 \strategy<2->[prob=2, positive only, root=w2]{0.4 & 0; 0.4; 0; 1; 0.5; 0 & 0.5; 1/3; 0.4;
0.8; 3/4 & 0; 0.6; 1}↪→

11 \end{gametree}

The above two figures show both overlays. On the first overlay, the probability of each edge is
displayed with the show prob key. Its value path causes the probabilities to be shown only on the path
of the strategy profile. On the second overlay, the root=<name> key draws the conditional distribution,
given that coordinate (<name>) is reached. By default, branches with probability 0 are still highlighted
using the players’ colors. This behavior can be turned off with the key positive only.

20



3.5 Automata
Fig. 24

xE,E

(E, E)

xE,S

(E, S)

xS,S

(S, S)

xS,E

(S, E)

(E, E)

(E, S)

(S, S)

(S, E)

1 \begin{automaton}[ap, bend right=10, radius=5mm]
2 \foreach[count=\i] \x in {{E, E}, {E, S}, {S, S}, {S, E}} {
3 \node[atm] (x\i) at (90*\i+45:1) {$x_{\apm{\x}}$};
4 \edge[path={mod(\i,2)}, loop=90*\i+45] (x\i) ->{\x};
5 }
6 \foreach[count=\i] \x in {{E, E}, {E, S}, {S, S}, {S, E}} {
7 \pgfmathtruncatemacro{\j}{Mod(\i-2,4)+1}
8 \edge (x\i) {\x}<-> (x\j);
9 }

10 \edge (x1) <-> (x3);
11 \edge[path] (x2) <-> (x4);
12 \end{automaton}

TikZ was designed to draw graphs like automaton representations of strategy profiles: a series
of nodes that are connected by arrows. In that sense, the basic functionality of TikZ already serves
the purpose well; especially with the automata library provided by TikZ. Nevertheless, there is some
redundancy that I aimed to remove with the \edge command.8

The package provides the automaton environment in order to set keys easily for the entire automaton.
Automaton states are drawn as \nodes with the atm style. Arrows between states are declared by
the syntax \edge <sequence of segments>;. Each segment in the sequence is of the form(<from
coord>) <direction and labels> (<to coord>), where (<from coord>) and (<to coord>) have
to be named coordinates and <direction and labels> is either ->, <-, or <-> with optional labels
on either side of the arrows. If more than one segment is drawn, the (<to coord>) from one segment
is used as the (<from coord>) of the next segment, i.e., \edge (x1) -> (x2) -> (x3); will draw
arrows from (x1) to (x2) and from (x2) to (x3). Arrows returning to the same state are drawn with the
loop=<angle> key, where <angle> indicates the direction, in which the looping arrow is drawn.

The environment key ap encloses each <arrow label> with \ensuremath{\ap{<arrow label>}}.
The key bend right=<curv> determines the direction and the curvature of the arrows. Arrows with
the loop key are not affected by the curvature, but they are affected by the direction. The key
radius=<length> sets the radius of each node to a minimum of <length>. Finally, by providing the
path key to the \edge command, the arrows are highlighted.

8In automata, labels are always placed midway along the edge. With the standard TikZ notation, one would have to
rewrite the statement node[midway, <direction>] for every arrow label. Moreover, with the standard TikZ notation,
bidirectional arrows require two separate drawing instructions, which may complicate the code in some situations.

21



Fig. 25
xC xPp

1 − p

1 \begin{automaton}[force math, straight, arrow=-stealth, alert color=player3]
2 \foreach[count=\i] \x in {C, P} {\node[atm] (x\x) at (180*\i:1.2) {$x_\x$};}
3 \edge[loop=left, path=0.75] (xC) ->{p};
4 \edge[path=0.5, pos=0.46] (xC) ->{1-p} (xP);
5 \edge[loop=right, path] (xP) ->;
6 \end{automaton}

As usual, the key force math places all edge labels in math mode. The key straight is shorthand
for bend right=0 and makes all non-looping arrows straight. The arrow shape can be set with the
arrow key, where any values are acceptable that are understood by TikZ. Finally, the key <highlight
color> sets the color, in which edges with the path key are highlighted in.

The key path=<ratio> mixes the highlight color with the package foreground color xg-fg
according to the provided <ratio> between 0 and 1. In fact, this is how only the looping arrows for
odd \i were colored in Figure 24. If the <ratio> is omitted, it is set to 1. To display the edge label at
a different position than the middle along the path, we set the key pos=<ratio>.

Without any individual path options such as path and pos, the arrows could have been drawn also
with the instruction \edge (xC) -> (xC) -> (xP) -> (xP);. Loops can be incorporated in such a
sequence of edges by simply repeating the same coordinate. Since you cannot provide individual path
options in this way, you will have to leave it to the algorithm to decide the direction of each loop.

Fig. 26
σ(h) =

(E, E) if h = (ȳ, . . . , ȳ),xC

(S, S) otherwise. xP

1 \[ \sigma(h) = \begin{cases}
2 \ap{E, E} & \text{if }h=(\bar{y},\ldots,\bar{y}),\atmstate<2->[xshift=-1mm]{x_C}\\[2mm]
3 \ap{S, S} & \text{otherwise}.\atmstate<2->{x_P}
4 \end{cases} \]

To visualize which automaton states correspond to which instructions in the strategy profile, you can
mark up the strategy profile with the command \atmstate«overlay»[<options>]{<label}. Note
that \atmstate does not need to appear within a TikZ environment.

The somewhat overlapping design is intentional to give it the appearance as if the automaton
states were thrown on top of the strategy profile in overlay 2. How much overlap is visually acceptable
however, depends heavily on the content. The key xshift=<dimen> allows you to correct for that.
Similarly, vertical alignment can be fine-tuned with the key yshift=<dimen>.

4 Usage

4.1 Package Dependencies
This package uses the contour, listofitems, tikz, xcolor, and the xfp package, all available on
CTAN, as well as a small utility package fikz that is available on my website. If the package is loaded
with the external option, the package environ is loaded additionally.

22

https://ctan.org/
http://www.benjamin-bernard.com/


4.2 Package Options
The package comes with only relatively few package options. Most of the customization comes from
the key system; see below. The package options are:

ap limits the size of the parentheses of \ap in textstyle math mode to \big. This will often
look better if you use action labels with \hats or \tildes.

contrast disables coloring of all text commands and matrixgames. Other environments are still in
color. This option is intended for improving readability without disabling colors completely.
For printing on black and white printer, use greyscale instead.

draft enables the contrast and the nonode option and it disables overlays and contours. All
serves to obtain a minor improvement in compilation speed.

external enables support for TikZ’s externalization library. Write \externalize{<name>} before any
tikzpicture or any environment from this package to export the figures to a separate pdf.
The name of the document is <name>-<overlay>.pdf in any non-handout beamer mode or
<name>.pdf in beamer’s handout mode or in any other document class. For the environments
from this package, you can alternatively set the key external=<name> at the environment
level. Externalization is, of course, very slow during the first compilation. However, figures
will not have to be redrawn in any future compilations (unless there are changes to the
figures). Make sure no two figures share the same <name>. If you specify the same <name>
for two or more figures, the figures are exported in every compilation because the metadata
will have changed from the last compilation by the other figure sharing the same <name>.

greyscale sets the contrast option and changes the player colors to grey scale.

metropolis sets the package’s default foreground and background colors xg-fg and xg-bg, respectively,
to the corresponding colors of the beautiful metropolis beamer theme.

nodraft ensures that the draft option is disabled even if the document class is loaded with it.

nonode improves compilation speed of game trees by drawing nodes as a circle-shaped path instead
of a full-fledged TikZ node. As a consequence, TikZ paths ending in such a node will not
be shortened, but rather end behind the node’s center. The output of all commands from
this package will look identical with or without the nonode option, but if you intend to
mark up the trees with arrows, for example, you may wish to load the package without
this option. This documentation, in fact, has been typeset with the nonode option.

4.3 Key System
The appearance of payoff matrices, belief spaces, game trees, and automata are governed by keys.
Keys set at the level of an individual command are set only locally for that specific command. Keys
passed to individual commands can be made active until the end of the environment by passing
the sticky key. For \branch and \informset, sticky keys are active only until the active player
changes (through an invocation of the player key). For these two commands, very sticky makes
keys active until the end of the environment. Keys set at the level of an environment are set as
the default for the entire environment, but can be overridden by keys at the command level. To
change the default behavior globally, use the commands \matrixsetoptions for normal-form games,
\payoffsetoptions, \statesetoptions, and \informsetoptions for payoff sets and belief spaces,

23



\treesetoptions, \edgesetoptions, \subgamesetoptions, and \strategysetoptions for game
trees and \atmsetoptions for automata. Note that \edgesetoptions customizes edges in a game tree,
not the \edge command in an automaton. Those are governed by \atmsetoptions. All keys that are
available at the environment level are also available globally, but keys available for individual commands
need not be available at the environment level and vice versa. Which keys are available at which level is
indicated below. If the scope of a key differs from the standard behavior, it will be mentioned specifically.

4.4 Coloring Text
The basic idea is that each player has a dedicated color, a number, a name, and an “initial”. The
package supports at most nine players with numbers 1, . . . 9. Everything related to player i is typeset in
that player’s dedicated color. Player i’s name can be accessed by the \pli command. Either player i’s
name or player i’s number can be used to label payoff matrices, information sets, and nodes in game
trees. Player i’s initial or number can be used to label decision variables of that player. Player 0 is
reserved for Nature, which follows special coloring rules in the gametree environment.

\ap [<sep>]{<list of strings>} is used to typeset action profiles or payoff vectors in the
players’ colors. It takes a comma-separated <list of strings> and typesets a <sep>-
separated list of strings, delimited on both sides by parentheses, in which element i of <list
of strings> is typeset in player i’s color. The parentheses adjust in size to the height of
<list of strings>, capped at \big in textstyle math if the ap package option is set.

\apm [<sep>]{<list of strings>} is used to typeset action profiles or payoff vectors within
payoff matrices (hence the m in the macro name). It behaves like \ap[<sep>]{<list of
strings>}, except that the colorized list of strings is not delimited by parentheses.

\aps [<sep>]{<list of strings>} is used to typeset a tuple (state, action profile), where
the state is typeset in nature’s color. The macro behaves like \ap[<sep>]{<list of
strings>}, except that element i of <list of strings> is typeset in player i − 1’s color.

\apsm [<sep>]{<list of strings>} is the combination of \apm and \aps.

\BR [<string>] is used to denote the players’ best-response correspondences. It typesets
\mathcal{B}_{<string>} in player <string>’s color if <string> is a positive integer and
it typesets \mathcal{B}_{<string>} without changing color otherwise.

Example: \BR and \BR[i] typeset B and Bi without changing the text color.

\definevar [<options>]{<list of player variables>} is used to make the players’ decision vari-
ables easily accessible in the proper color. The argument <list of player variables>
is a nested list of variables: the first layer separates players by semicolons and the second
layer separates each player’s variables by commas. If the variable is a <string>, a new
macro \<string> is defined that typesets <string> in player i’s color. If player i’s variable
is a \macro, the macro \macro is redefined to typeset the original content of \macro in
player i’s color. With the notation \macro-><content>, the macro \macro is (re)defined
to typeset <content> in player i’s color. If \<string> or \macro override existing macros,
those are available again after the decision variable is released with \releasevar.

If \<string> or \macro is followed by a subscript, the subscript is typeset in player i’s
color as well. By setting the key postfix=^ or postfix=', superscripts and primes are
typeset in player i’s color as well. With the key prefix=<command name>, an additional

24



macro \<string><command name> or \marco<command name> is defined, which expands to
\<command name>{<string>} or \<command name>{\macro}, respectively. When the key
player=<num> is set, the variables before the first semicolon are treated as player<num>’s
variables and the player counter increases with each semicolon.

Example: The command \definevar[player=2, prefix=tilde]{\alpha; \beta} de-
fines the commands \alpha and \alphatilde, which typeset α and α̃ in player 2’s color,
and the commands \beta and \betatilde, which typeset β and β̃ in player 3’s color.

\disablecolor Saves player colors and sets them equal to the package foreground color xg-fg.

\enablecolor Restores player colors to the colors before \disablecolor.

\letplayercolors [<first>]{<list of xcolors>} sets the players’ colors starting from player <first> to
those specified in the comma-separated <list of xcolors>, where each color in the list
must be understood as a color by the xcolor package. Specifically, \letplayercolors calls
\colorlet{playeri}{<xcolor i>} from the xcolor package for each element <xcolor
i> in <list of xcolors>. Use \colorlet directly for changing a single player’s color.

\multivar [<options>]{<list of variables>} makes the players’ decision variables easily accessible
in the proper color if all the player’s decision variable are denoted by the same letter.
The argument <list of variables> is a comma-separated list of strings or macros. For
each string variable <string>, a single-argument macro \<string>{<num>} is defined that
typesets <string> in player <num>’s color. For each macro variable \macro, the macro
\macro is redefined to a single-argument macro \macro{<num>} that typesets the original
content of \macro in player <num>’s color. With the notation \macro-><content>, the
macro \macro is (re)defined to a single-argument macro \macro{<num>} that typesets
<content> in player <num>’s color.

The index key governs whether the variables are indexed by a subscript corresponding to
player i. The default is index=number, which indexes the variable with player i’s number.
Option index=players only does the same, but suppresses coloring and indexing for
<num>=0. Key-value pair index=initial places the initial letter of the players’ names in
the subscript and suppresses coloring and indexing for <num>=0. For index=none, no index
is placed. For this option only, any following subscripts are typeset in player i’s color. If
the value is invalid, it is set to number. The keys prefix and postfix are available as they
are for the \definevar command. The only other available key is sticky, which saves the
current key-value pair as default for future calls of \multivar.

\pl {<num>}{<string>} for <num>= 1, . . . , 9 typesets <text> in player <num>’s color. The
argument may be omitted, in which case player <num>’s name is typeset. If a non-default
<text> is to be typeset, <text> has to be enclosed by braces even if it is a single token.

\plset {<num>}{<list of strings>} for <num>= 1, . . . , 9 typesets the comma-separated <list
of strings> in player <num>’s color in textstyle math mode and encloses it in braces.

\pltext {<num>}{<string>} for <num>= 1, . . . , 9 typesets <string> in player <num>’s color in text
mode. This is a shorthand for \text{\pl{<num>}{<string>}}.

\releasevar {<list of variables>} releases variables defined by \definevar and \multivar and re-
stores any macros that were overriden in the interim. The argument <list of variables>

25



is a comma-separated list of strings or macro names. The argument is optional and, if it is
omitted, all variables defined by \definevar and \multivar are released.

It is best to avoid using \definevar, \multivar, and \releasevar within environments
whose procedural code is executed repeatedly because it may lead to undefined macros.
Examples of such environments are equations or frames if the beamer mode second is used.9

\resetplayernames Sets the player’s names and initials to the default values “Player i” and “i”, respectively.

\setplayercolors [<first>]{<color model>}{<list of color specs>} sets the players’ colors starting
from player <first> to those specified in the semicolon-separated <list of color specs>,
interpreted in the <color model>. The <color model> and the color specification must be
compatible with the xcolor package since that package’s \definecolor{playeri}{<color
model>}{<color spec i>} is called for each <color spec i> in <list of color specs>.
Use \definecolor directly for changing a single player’s color.

\setplayername {<num>}{<name>} sets player <num>’s name to <name> and player <num>’s initial to the first
token of <name>. The defaults are reset by \resetplayernames.

\setplayernames [<first>]{<list of names>} sets the players’ names starting from player <first> to the
values in the comma-separated <list of names>. The default value of <first> is 1.

\textset <num>{<list of strings>} typesets the comma-separated <list of strings> in text
mode and encloses it in braces. The <strings> are typeset in player <num>’s color if <num> is
provided. The color is not changed if <num> is omitted. Note that there are no braces around
<num> since LATEX will understand {<num>} as the mandatory {<list of strings>}.

Example: $\textset{1}{text}$ is typeset as {1}text since {1} is interpreted as the
{<list of strings>} and {text} simply as a group that follows \textset.

4.5 Normal-Form Games
The dedicated environment matrixgame simplifies drawing of normal-form games by allowing you to
specify keys for the entire game. However, all commands work in any tikzpicture environment. The
following keys can be passed to the matrixgame environment as optional arguments:

bottom = <list of strings> typesets labels below the payoff matrices of this game by calling
\bottomlabel{<list of strings>}; see the description below for details.

br = <bool> indicates whether the players’ best responses in the payoff matrices will be
computed and highlighted automatically with the \br command. The initial value is false
and the default value (if the key is passed without value) is true. This option is supported
only for games with at most three players.

color = <color> sets the color of the payoffs in the cells to <color>. If passed at the environment
level, the default color of the labels are also set to <color>.

debug = <bool> indicates whether label placement is visualized for debugging purposes; see
Figure 27. The initial value is false and the default value is true.

9As a specific example, suppose that \A is defined to A in the preamble and \multivar{A} is used in the beginning of
an example to typeset Ai in player i’s color. If you use \releasevar{A} within a frame that is executed twice, then the
first call undefines \A and redefines it to A, but the second call undefines \A completely.

26



1 \begin{matrixgame}[force math, debug]
2 \payoffmatrix[h=0.7]{1, 3 & 4, -2\\ 0, -2 & 3, 1}
3 \leftlabel{\alpha, \beta\varepsilon\tau\alpha}
4 \toplabel{\lambda, \rho}
5 \bottomlabel{$\theta$}
6 \end{matrixgame}

1, 3 4, −2

0, −2 3, 1

α

βετα

λ ρ

θ

Figure 27: The thin border around the \payoffmatrix is set at a distance of one label sep. The intent
of the debug key is to help you figure out why labels are not typeset the way you would like them to. For
example, the option highlights that action labels are not baseline-aligned by default. You can change this by
passing the base line option to \leftlabel and \toplabel, respectively. Moreover, the \bottomlabel is set
at a distance of 1.4 label sep. You can set it closer to the matrix by passing the tight key to \bottomlabel.

external = <name> externalizes the resulting image as <name>.pdf or the resulting series of images
as <name>-<overlay>.pdf, depending on the document class. This option requires the
external package option, which enables TikZ’s externalization library.

font = <font spec> adjusts the size or shape of the font used in payoff matrices, as well as the
labels if the key is passed at the environment level. The initial value is \normalsize.

force math = <option> determines whether the contents of \payoffmatrix and the label commands
are put into math mode. The options matrix and label set only one or the other in math
mode; the options true and false set both inside or without math mode, respectively. The
initial value is matrix and the default value (if the key is passed without value) is true.

h = <num> specifies the height of each cell in TikZ units. The initial value is 0.8.

immediate = <option> determines whether \payoffmatrix, \strike, \drawpayoffs, and the label
commands typeset their content immediately or whether they parse the input only and
typeset the output at the end of the matrixgame environment. Admissible values of
<option> are true, false, and text. If set to text, labels and payoff matrices are typeset
immediately, but \strike and \drawpayoffs are not. If set to false, all commands
are typeset at the end of the matrixgame. If set to true, all commands are typeset
immediately. The option immedate=true may help marking up normal-form games, but
immediate=false is necessary to pass labels as keys and to determine best responses
of 3-player games with key br. Moreover, payoff matrices are parsed first, followed by
label commands, which are then followed by \strikes and \drawpayoffs. In a regular
tikzpicture environment, immediate=true is always set. The initial value is text and
the default value (if the key is passed without value) is true.

label font = <font spec> adjusts the size or shape of the font used in labels. The initial value is
\normalsize.

label sep = <length> specifies the distance, at which the labels are typeset from the payoff matrix.
The \toplabel’s bounding box (baseline) is set at distance <length> if the key vertical
align=center (vertical align=baseline) is set. The \bottomlabel’s bounding box
is set at distance 1.1<length> if it is a 3-player game or the option tight is passed to
\bottomlabel. It is set at distance 1.4<length> otherwise.

left = <list of strings> typesets labels to the left of the payoff matrices of this game by
calling \leftlabel{<list of strings>}; see its description below for details.

27



1 \begin{matrixgame}[left={A, B}]
2 \payoffmatrix{0 & 1 \\ 2 & -1}
3 \toplabel[color=xg-fg]{H, L}
4 \end{matrixgame}
5 \begin{matrixgame}[top left={A, B}, player=1]
6 \payoffmatrix{0 & 1 \\ 2 & -1}
7 \end{matrixgame}

Figure 28: The color and player keys allow alternative ways of writing the center and right-most matrix
in Figure 3. Use commands \leftlabel, \toplabel, and \bottomlabel to pass options to labels. The keys
player=i and color=playeri are mostly interchangeable except if passed at the environment level: the former
colors only payoff matrices, whereas the latter also colors labels.

left align = <option> specifies whether \leftlabels are center, left, or right aligned.

line width = <length> specifies the line width of the payoff matrix. You can also change the line
width with the 7 default TikZ line width keys thin, thick, very thick, etc.

list sep = <string> sets the separator of label arguments to <string>. The initial value is ,.

name = <string> assigns the name <string> to the parsed payoff matrix. The parsed payoff
vectors can later be recalled and drawn by \drawpayoffs[name=<string>].

player = <num> sets the color of the payoffs in the cells to those of player <num>.

players = <bool> determines whether the player’s names are shown next to their actions. The
initial value is false and the default value (if the key is passed without value) is true.

player names = <list of strings> sets the players’ names starting from player 1 to the strings in
<list of strings> and sets the key players=true. The player names are set globally,
hence will be available after the matrixgame through the commands \pli.

pos = {<x>,<y>} places the center of the payoff matrix at TikZ coordinate (<x>, <y>).

single player = <option> specifies the default colors of labels and payoffs when payoffs of only a single
player are specified. Admissible values for <option> are default, zero-sum, and nature.
The former two make no changes to label colors and typeset payoffs in black and player i’s
color, respectively, where i is the player specified in the zero-sum key (set to player 1
initially). The value nature sets the color of payoffs and the top label to xg-fg.

strike width = <length> specifies the line width of strikes drawn with the \strike command.

top = <list of strings> typesets labels above the payoff matrices of this game by calling
\toplabel{<list of strings>}; see its description below for details.

top left = <list of strings> typesets labels above and to the left of the payoff matrices by calling
\toplabel{<list of strings>} and \leftlabel{<list of strings>}.

vertical align = <option> specifies how cell contents are vertically aligned, where <option> is either
default (initial value), baseline, or center. The option center centers the text vertically,
based on the text’s total height (= height + depth). The option baseline aligns the
vertical center above the baseline. The option default aims to reproduce the baseline
option without measuring the labels for the sake of compilation time. This works correctly
if labels and cell contents have the height of a capital A and the depth of a comma.

28



w = <num> specifies the width of each cell in TikZ units. The initial value is 1.6.

zero-sum = <num> is short-hand for single player=zero-sum and player=<num>. The default value
and the initial value are 1.

All keys can also be set globally by passing them to the \matrixsetoptions command. The commands
used to typeset normal-form games are the following:

\bottomlabel «overlay spec»[<options>]{<list of strings>} places string i in the comma-separated
<list of strings> below matrix i of this game. Admissible <options> are localized ver-
sions of the environment keys color, list sep, and player, as well as base line=<bool>
and tight=<bool>. If the payoff vectors within the \payoffmatrix commands are at least
3-dimensional, the default color is player 3’s color and the tight option is enabled by de-
fault; see label sep above. If the payoff vectors are at most 2-dimensional, the default
color is xg-fg and tight is disabled by default.

\br «overlay spec»{<text>} underlines <text> on the slides indicated by <overlay spec>
and displays <text> without underline on the remaining slides.

\leftlabel «overlay spec»[<options>]{<list of strings>} places string i in the comma-separated
<list of strings> to the left of row i in each payoff matrix of this game. Admissible
<options> are localized versions of the environment keys color, list sep, and player,
as well as base line=<bool> and align with possible values left, center, and right.
The default color is player1, the initial horizontal alignment is center, and the initial
vertical alignment is set by the vertical align key at the environment level.

\payoffmatrix «overlay spec»[<options>]{<table>} draws a table with the payoffs indicated in <table>.
In the argument <table>, rows are separated by \\, columns are separated by &, and pay-
offs of the different players are separated by commas. By default, the payoff vector within
each cell is put into math mode, that is, the force math key is set to matrix. Thus, $
signs are not needed in the input.10 The environment keys br, color, font, force math,
h, line width, player, pos, vertical align, and w, as well as the 7 default TikZ line
width keys thin, thick, very thick, etc., can be passed to a \payoffmatrix.

\strike «overlay spec»{<option>}{<num>} is used to strike out the players’ actions simultane-
ously in all payoff matrices of this game on the slides specified by <overlay spec>. The
<option> can take the values h for striking out row <num> horizontally, v for striking out
column <num> vertically, and x for striking out matrix <num>.

\toplabel «overlay spec»[<options>]{<list of strings>} places the string at position i in the
comma-separated <list of strings> above column i of each payoff matrix. Admissible
<options> are localized versions of the environment keys color, list sep, and player,
as well as base line=<bool>. The default color is governed by the single player key
and the initial alignment by the vertical align key set at the environment level.

4.6 Payoff Sets
Pictures of payoffs and payoff sets can be drawn by hand using the \state and the \draw[edge]
commands, where edge is simply a TikZ style that inherits the line width from the states. Drawing

10This choice was made so that payoff vectors can be parsed easier for \drawpayoffs.

29



1 \begin{beliefspace}
2 \state[autolabel=$\omega_{\enum}$] at (0, 0);
3 \foreach \x in {-1, 0, 1} {\state at (\x, -0.9);}
4 \end{beliefspace}

ω1

ω2 ω3 ω4

Figure 29: Equivalently, the key state autolabel=$\omega_{\enum}$ could have been passed to the
beliefspace environment. If states are placed in a rectangular left-aligned grid, use \stategrid instead.

payoff sets by hand is easier with the nonode package option since paths connecting the states will not
be shortened. If the payoff vectors have been parsed by \payoffmatrix, the payoff vectors and their
convex hull can be drawn automatically with the command \drawpayoffs.

\state «overlay»[<options>] (<name>) at (<coord>) «label overlay»{<label>}; is used
to place payoff vectors or nodes at coordinate (<coord>). The only mandatory argument
is <coord>. If <name> is provided, a TikZ node or coordinate with name (<name>) is
placed at (<coord>). The coordinate is placed on all slides of a frame, but it is visible
only on those indicated by <overlay>. If the <label> is provided, it’s center is placed in
the direction indicated by the label key. Since nodes are only a visual representation of a
dimensionless point, their size does not change when the image is scaled.

The available key-value pairs that can be passed as <options> to the \state command are the
following. They can also be set globally by passing them to \statesetoptions.

autolabel = <code> automatically labels all following states in the beliefspace, starting with the
current state. Use the macro \enum in the <code> as a placeholder for the value of a
counter that is increased with each state; see Figure 29 for an example.

The <code> is fully expanded so that \enum is replaced with the correct value. Any non-
expandable macros appearing in <code> must be protected with a \noexpand.

base line = <bool> vertically aligns the height above the label’s baseline if set to true. Otherwise,
the label is vertically centered based on its total height (= height + depth). The initial
value is true in a beliefspace environment and false otherwise. The default value (if
the key is passed without value) is true.

color = <color> sets line color and label color to <color>.

contour = <option> determines whether a contour of the package background color xg-bg is
drawn around the label. The initial value is false and the default value (if the key is
passed without value) is true. The contour is drawn using the contour package. Setting
contour=delay is equivalent to setting contour=true and delay=true.

debug = <option> determines whether the placement of the label is visualized for debugging
purposes; see Figure 27. Admissible values for <option> are true, detail, and false.
The initial value is false and the default value (if the key is passed without value) is true.

delay = <bool> determines whether the state is drawn at the end of the environment. In either
case, the coordinate is defined immediately. As with the nonode package option, path
shortening is not available if delay is set to true.

30



1 \begin{tikzpicture}
2 \state[label=60, debug=detail, sticky] at (0, 0) {Label};
3 \state[label placement=box] at (2, 0) {Label};
4 \end{tikzpicture}

Label Label

Figure 30: The center algorithm places the center of the label’s bounding box at the angle specified by the
label key such that the closest point is label sep away from the state. One advantage of this algorithm is that
it is continuous in the specified angle. The box algorithm instead places the closest point of the label’s bounding
box at the angle specified by the label key. One advantage of this algorithm is that the label will never
intersect a line going through the state perpendicular to the angle (as it is the case for edges in game trees).

delay contour = <bool> determines whether the \state’s <label> is typeset at the end of the environment
whenever the contour key is active to place the contour in front of any other objects. As
with the delay label key, <label> is expanded once.

delay label = <bool> determines whether the \state’s <label> is typeset at the end of the environment.
The initial value is false and the default value (if the key is passed without value) is true.

fill = <color> determines the color of the state’s interior. The default value is the active
player’s color. For player 0 (active initially), it is xg-bg, the package background color.

font = <font spec> adjusts the font of the label. The initial value is \small.

label = <direction> specifies the direction, in which the label is placed. Accepted values for
<direction> are the eight cardinal directions left, above left, above, etc. as well as
any number, interpreted as angle in degrees. The initial value is 0.

The eight cardinal directions left, above left, above, etc. are also defined as their own
keys: \state[below right] at (0, 0) {A}; places the label A below and to the right
of the state. To replicate the behavior of standard TikZ nodes with these direction keys,
the label placement algorithm is set to box. The result is thus slightly different than for
\state[label=-45] at (0, 0) {A};, which keeps the current label placement algorithm.

label color = <color> determines the color of the label. The default color is the active player’s color.

label placement = <option> specifies which label placement algorithm is used, where <option> may take
the values center, box, or simple. For each algorithm, the distance from the anchor point
to the label’s bounding box is determined by the label sep key. The center algorithm
places the center of the label in the specified direction of the anchor point. The box
algorithm places the closest point of the bounding box in the specified direction of the
anchor point; see Figure 30. The simple algorithm places the closest point of the bounding
box in one of the eight directions above, above right, etc. of the state. Note that the
latter two are discontinuous in the specified direction. The default algorithm is center.

label sep = <length> specifies the distance of the closest point of the label’s bounding box from the
outer rim of the circle representing the state. The initial value is 1ex.

line color = <color> draws the state’s outline in <color>. The default color is xg-fg.

line width = <length> specifies the line width used to draw the state. You can also change the line
width with the 7 default TikZ line width keys thin, thick, very thick, etc. Changing
the width will also change the state’s radius so that the state’s interior stays the same; see

31



1 \begin{tikzpicture}
2 \foreach \i in {1, 2, 3} {\state[line width=\i pt] at (\i, 0);}
3 \foreach \i in {2, 3, 4} {\state[radius=\i pt] at (\i-1, -0.7);}
4 \end{tikzpicture}

Figure 31: Increasing the line width also increases the state’s radius.

Figure 31. Moreover, the line drawn by the TikZ style edge is set to the same width. The
initial value is 0.8pt in beamer and 1pt in other document classes.

radius = <length> specifies the radius of the state. The initial value is 1.5pt in beamer and 2pt
in other document classes.

An automated way to draw payoffs and their convex hull is provided by the \drawpayoffs command,
provided that the payoffs have been parsed by \payoffmatrix. Needless to say that this gimmick is
slower than when payoffs are drawn by hand. Thus, this feature may not have a place in long lecture
slides that are compiled many times, but I do find it helpful when creating assignment questions to
check at a quick glance which payoff vectors can be attained by, say, trigger strategies.

\drawpayoffs «overlay spec»[<options>] draws payoff vectors parsed by \payoffmatrix, their convex
hull by means of the Graham scan, as well as coordinate axes.

The following are the keys that can be passed as <options> to the \drawpayoffs command or they
can be set globally by passing them to \payoffsetoptions.

axis = <factor> sets the length of the drawn axes equal to <factor> times the difference
between maximal and minimal payoffs parsed in either direction.

force math = <bool> indicates whether . The initial value is equal to true if force math=matrix or
force math=true was specified in a \payoffmatrix in the same environment. Otherwise,
the initial value is false. The default value (if the key is passed without value) is true.

labels = <bool> specifies whether the payoff vectors are labeled. If they are, the labels are placed
facing away from the center of mass of all payoff vectors drawn. The initial value and the
default value (if the key is passed without value) are both equal to true.

line width = <length> specifies the line width used to draw the payoffs and their convex hull. You
can also change the line width with the 7 default TikZ line width keys thin, thick, very
thick, etc. Changing the width will also change the states’ radius so that the states’
interior stays the same.

matrix = <num> indicates which payoff matrix of name name is to be drawn.

name = <string> causes the macro to draw the payoff vectors in matrix matrix stored by
\payoffmatrix under the name <string>. Without specifying a name in either macro,
the most recently read \payoffmatrix is drawn.

scale = <factor> scales the drawn payoffs by <factor>.

shift = {<x>,<y>} shifts the origin of the drawn payoffs to coordinate (<x>, <y>) in the underlying
TikZ coordinate system.

32



W
N

u(α)

Eα[γ(Y )]

vv

W

N

u(α)

Eα[γ(Y )]

vv

Uv

Figure 32: The normal vectors of \halfspaces are scale-invariant, but they are purposely designed not the
be shear-invariant in order to accurately reflect coordinate transformations. If one redraws Figure 6 with
environment options [yscale=0.8, xscale=1.5], one obtains the above figure. Observe that \states are
both scale- and shear-invariant as they are just a visual representation of a dimensionless point.

tikz nodes = <bool> determines whether states are implemented as a full-fledged TikZ node with
path-shortening features or only as a coordinate with a circle-shaped path representation.
If the nonode package option is specified, the initial value is false, otherwise it is true. The
default value (if the key is passed without value) is true.

xscale = <factor> scales the drawn payoffs by <factor> in the x-direction.

yscale = <factor> scales the drawn payoffs by <factor> in the y-direction.

Half spaces are drawn with the \halfspace command.

\halfspace «overlay spec»[<options>] at (<coord>) dir (<normal>) {<label text>}; draws
the lower half-space through <coord> in the direction of the normal vector <normal>. If
a <label text> is provided, the normal vector is labeled by <label text>. The length of
the normal vector is unaffected by scale. If <normal> consists only of an angle, rather than
a full coordinate, the normal vector is suppressed.

All of its keys can be set at the macro level or globally with the command \halfspacesetoptions.

contour = <bool> determines whether <label text> is typeset with a contour of the package
background color xg-bg. There is no delay option for half-spaces.

depth = <length> specifies the depth of the hatching pattern.

hatch = <length> specifies the distance between two consecutive lines of the hatching pattern.
The hatching pattern is unaffected by changes to scale.

l = <length> specifies how far to the left of <coord> the half-space extends to. The initial
value is half of the width specified in the w key.

label = <direction> determines the <direction>, at which <label text> is typeset from the
tip of the normal vector. Accepted values for <direction> are the eight cardinal directions
left, above left, above, etc. as well as any number, interpreted as angle in degrees. The
initial value is the direction of <normal>.

The eight cardinal directions left, above left, above, etc. are also defined as their own
keys. To replicate the behavior of standard TikZ nodes with these direction keys, the label
placement algorithm is locally set to box.

33



w = <length> specifies the width of the \halfspace. The half space extends equally to both
sides unless the l key is set.

A convenient way to zoom into any TikZ image is the \zoom command.

\zoom «overlay spec»[<options>]{<figure>}<markup> displays both the <figure> and a zoom-
in of it, in which the zoomed-in part is marked up by <markup>. The zoom-in is shown
only on the slides specified by <overlay>. The size of nodes as well as the length of the
normal vector and the hatching pattern of half spaces are unaffected by the zoom.

The \zoom command is incompatible with any delay options. Named coordinates are
locally redefined within the zoom-in, but reset to the original coordinates afterwards. Any
delayed features are thus missing from the zoom-in. Because delayed features are not
supported, the nonode package option is locally disabled within a \zoom command.

There are four mandatory keys to be specified with the \zoom command.

l = {<x>,<y>} specifies the lower left coordinate (<x>,<y>) of the zoomed-in area. xg-bg.
There is no delay option for halfspaces.

scale = <factor> specifies the scale factor of the zoomed-in area.

shift = {<x>,<y>} shifts the center of the zoomed-in part by (<x>,<y>) in the non-zoomed-in
coordinate system.

u = {<x>,<y>} specifies the upper right coordinate (<x>,<y>) of the zoomed-in area.

4.7 Belief Spaces

The main commands used to draw belief spaces are \state and \informset. The \state command is
as described above, except that the label=<direction> key is ignored in a beliefspace environment.
Any state’s label is set to the right of the state to ensure that information sets also contain and pads
the labels. The available options for the beliefspace environment are the following.

arc = <angle> sets the total angle covered of arcs drawn with the exterior=arc option to
2*<angle>. The initial value is 22.5.

base line = <bool> sets <bool> as the initial value for the base line key of all \states and
\informset within the beliefspace. The initial and default values are both true.

center = <option> determines whether states and their labels are horizontally centered within
\informsets. Admissible values for <option> is a <bool> or a <length>. If set to true,
\states are drawn only at the end of the environment to ensure that the labels of all
\states have been measured. In order for labels appearing in a for loop to be typeset
correctly, use \xforeach, which expands labels once before they are stored for later use.
If <option> is a <length>, the states are placed immediately under the assumption that
<length> is the width of the widest \state label.

In either case, the center option causes the coordinate (<name>) placed with the \state
command to be misaligned with the provided (<coord>); see below.

34



1 \begin{beliefspace}[radius={4mm, 5mm}, center, debug]
2 \state (w1) at (0, 0) {$\omega_1$};
3 \state (w11) at (0, 1.5) {$\omega_{11}$};
4 \foreach \i in {2, 3}{\coord (w1\i) at (120*\i-30:1.5);}
5 \informset[player=1, label=0:2] (w11) {$\tau_1$};
6 \informset (w12) .- (w1);
7 \informset[player=2] (w11) -- (w1) -. (w13) .- (w1);
8 \informlabel (above:2:1pt) at (w11) {$\ap{1, 0.2}$};
9 \informlabel (20:7mm) at (w1) {$\ap{0, 0.2}$};

10 \end{beliefspace}

ω1

ω11 τ1

(1, 0.2)

(0, 0.2)

Figure 33: For beliefspaces, the debug key visualizes the left and right anchors, around which the information
sets are drawn, where information sets are drawn to for half-open information sets, and how much the center
key displaces each state. The key also visualizes that labels are anchored at the center for angles 90 and −90,
but at the left and right anchors for any other angles. Moreover, we can see that labels of \informsets are
baseline-aligned by default, whereas \informlabels are not. This example demonstrates that we can use the
syntax (w1) -. (w13) .- (w1) to typeset non-convex open information sets. It also shows that label distances
can be provided as either <num>, <num>:<dimen>, or <dimen>.

contour = <option> specifies the initial values of the contour key of all \states or \informsets
within the beliefspace. Admissible values for state and inform, which set the initial
value to true for \state and \informset, respectively, as well as true and false, which
set the initial value to true and false, respectively, for both.

debug = <option> determines whether the placement of nodes, information sets, and labels are
visualized for debugging purposes; see Figure 33. Admissible values for <option> are true,
detail, and false. The initial value is false and the default value is true.

delay contour = <bool> specifies the initial values of the delay contour key of all \states or \informsets
within the beliefspace. Admissible values for state and inform, which set the initial
value to true for \state and \informset, respectively, as well as true and false, which
set the initial value to true and false, respectively, for both.

event = <length> sets the default radius of an information set of player 0 to <length>.

exterior = <option> determines how information sets are drawn that contain disjointed sets of states.
Allowable values for <option> are arc and extend; see Figures 12 and 34, respectively, for
examples. The initial value is arc.

external = <name> externalizes the resulting image as <name>.pdf or the resulting series of images
as <name>-<overlay>.pdf, depending on the document class. This option requires the
external package option, which enables TikZ’s externalization library.

font = <font spec adjusts the font of all labels in the belief space.

identical width = <bool> determines whether information sets are drawn as if all state labels had the same
width to create a uniform look. The default and initial value are true.

Disabling this option is currently supported only if states are in a single row, as in Figure 9.

inform autolabel = <code> automatically labels all \informsets in the beliefspace. Use the macro \pl in
the <code> as a placeholder for the player’s number and the macro \enum as a placeholder
for the value of a counter that is increased with each information set. If <code> contains

35



the macro \pl, player-specific counters are used in \enum, whereas a global counter is used
if \pl does not appear in <code>. See Figure 19 for an example.

The <code> is fully expanded so that \pl and \enum are replaced with the correct values.
Any non-expandable macros appearing in <code> must be protected with a \noexpand.

inform line width = <length> specifies the default line width used to draw \informsets.

left = <length> adds <length> to the left of the measured width of the information sets, which
causes the \state and its label to shift relative to its specified coordinate.

The left option causes the coordinate (<name>) placed with the \state command to be
misaligned with the provided (<coord>); see below.

line width = <length> specifies the default line width used to draw \states and \informsets.

radius = <list of lengths> sets the default radiii of the various players’ information set of the
elements of the comma-separated <list of lengths>.

right = <length> adds <length> to the right of the measured width of the information sets.

scale = <factor> scales the belief space by <factor>.

state = <bool> specifies whether a state and label are drawn separately or whether the label
itself represents the state. The initial value and the default value are both true.

state autolabel = <code> automatically labels all states in the beliefspace with <code>. Use the macro
\enum in the <code> as a placeholder for the value of a counter that is increased with each
state; see Figure 29 for an example.

The <code> is fully expanded so that \enum is replaced with the correct value. Any non-
expandable macros appearing in <code> must be protected with a \noexpand.

state inner sep = <length> specifies how far from the label any markup will stop if the state=false
option is set. See the pgf manual for a description of the inner sep key of a TikZ \node.

state line width = <length> specifies the default line width used to draw \states.

state radius = <length> specifies the radius of \states drawn in the belief space.

tikz nodes = <bool> determines whether states are implemented as a full-fledged TikZ node with
path-shortening features or only as a coordinate with a circle-shaped path representation.
If the nonode package option is specified, the initial value is false, otherwise it is true. The
default value (if the key is passed without value) is true.

xscale = <factor> scales the belief space by <factor> in the x-direction.

yscale = <factor> scales the belief space by <factor> in the y-direction.

If the coordinate (<name>) defined with the \state command is misaligned with the specified <coord>,
a coordinate (<name>-is) (for information set) is placed at <coord> and can be accessed if needed.
If such misalignment takes place, the command \informset (w1) -- (w2); draws information sets
around coordinates (w1-is) and (w2-is) instead of (w1) and (w2); see Figures 9 and 33.11 It is

11This is in most cases precisely what one wants if one specifies the center or left option, but it is good to be aware
of it if one draws \informsets not just around \states but also around regular TikZ \coordinates.

36



ω1 ω2 ω3 ω4

ω5 ω6 ω7

A1

A2

B1 B2C1 C2

Figure 34: The code is identical to Figure 12 with two exceptions. First, the exterior=extend key is provided
to the environment. Second, because information sets cannot have a non-convexity at the first node, line 11 is
instead \informset[player=3] (w1) -- (w5) ~~ (w7) -- (w3) -- (w7) ~~ (w5) {$C_1$};

recommended to use the command \coord introduced below, rather than the TikZ native \coordinate,
because \coord takes care of the horizontal misalignment if the center or left keys are provided.

States in a rectangular grid can be drawn with the \stategrid command.

\stategrid «overlay spec»[<options>]<list of labels>; is used to draw a rectangular grid of
states. Unless the autolabel key is provided, rows in <list of labels> are separated by
\\ and columns are separated by &. If the autolabel is set, <list of labels> is instead
a \\-separated list of integers specifying the number of states in each row.

The key-value pairs available for <options> are the following. Those keys can also be set globally by
passing them to the \gridsetoptions command.

The <code> is fully expanded so that \enum is replaced with the correct value. Any non-expandable
macros appearing in <code> must be protected with a \noexpand.

autolabel = <code> automatically labels the states in the grid with <code>. The macro \enum is
used to refer to the states’ indices, determined by the enum key.

enum = <option> specifies how states are indexed. Admissible values for <option> are grid
and line. The former indexes a state through <row><column>, whereas the latter indexes
states consecutively. The initial value is line.

force math = <bool> determines whether the labels of each state in the grid are put into math mode.
The initial value is false and the default value (if the key is passed without value) is true.

h = <num> specifies the horizontal distance between two columns in TikZ units. The initial
value is 1.2.

name = <name> specifies the name of the coordinates that are assigned to the states in the grid.
The coordinate of state at <index> is labeled (<name><index>), where <index> is specified
by the enum key. The initial value is w.

v = <num> specifies the vertical distance between two rows in TikZ units. The initial value is 1.

Non-grid patterns of \states as in Figure 8 can be drawn efficiently with a for loop. In order for
running variables to be expanded, use the \xforeach command.

37



\xforeach [<options>] \macroname in {<list of items>}{<code to be repeated>} behaves ex-
actly like pgffor’s \foreach command, except that the labels of any \state, \informset,
\informlabel, and \branch appearing within the loop are expanded once. If any non-
expandable macros appear in those labels, protect the frrom expansion by immediately
preceding them with \noexpand; see also Figure 8 and Footnote 3s.

Aside from states, the main command used to draw belief spaces is the \informset command.

\informset «overlay spec»[<options>] <list of coordinates> {<label text>}; is used to draw
an information set that contains the states specified in the <list of coordinates> on
the slides specified by <overlay spec>. The coordinates in <list of coordinates> are
separated by -- for default behavior, by .. to indicate a repeating pattern with a dashed
line, by .- and -. to draw a half-open information set in the direction of the dot, see Fig-
ure 9, or by ~~, ~^~, ~v~, ~<~, and ~>~ to draw information sets of a disconnected set of
states, see Figures 12 and 34. The direction of the connection between different compo-
nents is determined automatically for separator ~~, and it can be provided manually by
~^~, ~v~, ~<~, and ~>~ for connections above, below, to the left, and to the right, respec-
tively. If one of the components consists of a single state, the direction of the connection
must be provided manually. The environment key exterior governs how information sets
with multiple connected components are drawn. The <list of coordinates> has to be
provided in counterclockwise order and it has to start at a state on the convex hull (unless
the exterior=arc key is set, in which case it can start at a state on the convex hull on any
component). The <list of coordinates> is the only mandatory argument, the rest can
be omitted. The <label text> overrides any default label assigned to the information set.

The key-value pairs available for <options> are the following. Those keys can also be set globally by
passing them to the \informsetoptions command.

autolabel = <code> automatically labels all following \informsets in the beliefspace, starting with
this information set. Use the macro \pl in the <code> as a placeholder for the player’s
number and the macro \enum as a placeholder for the value of a counter that is increased
with each information set. If <code> contains the macro \pl, player-specific counters are
used in \enum, whereas a global counter is used if \pl does not appear in <code>. See
Figure 19 for an example.

The <code> is fully expanded so that \pl and \enum are replaced with the correct values.
Any non-expandable macros appearing in <code> must be protected with a \noexpand.

base line = <bool> vertically aligns the height above the label’s baseline if set to true. Otherwise,
the label is vertically centered based on its total height (= height + depth). Both the
initial value and the default value (if the key is passed without value) are.

color = <color> sets the color of the \informset and its label to <color>. The initial value is
the active player’s color, i.e. the player that was last invoked through the player key in
either the \state, \informset, or \branch command.

contour = <option> determines whether a contour of the package background color xg-bg is
drawn around the label. The initial value is false and the default value (if the key is
passed without value) is true. The contour is drawn using the contour package. Setting
contour=delay is equivalent to setting contour=true and delay contour=true.

38



curved = <curv> causes information sets to be drawn as curved dashed lines connecting the first
and last state of the information set, where <curv> is the curvature of the line. The feature
is initially turned off and the default value (if the key is passed without value) is 20.

dashed = <bool> represents information sets as straight dashed lines connecting its states if set to
true. This differs from curved=0, which connects only the first and the last state. The
initial value is false and the default value (if the key is passed without value) is true.

delay contour = <bool> indicates whether the \informset’s <label> is typeset at the end of the envi-
ronment whenever the contour key is active to place the contour in front of any other
objects. The same conditions on expandability of the label apply as for the \state’s key.
The initial value is false and the default value (if the key is passed without value) is true.

font = <font spec> adjusts the font of the label.

label = <option> determines how the label is placed. Admissible values for <option> are none,
which suppresses any labels, center, which places the label at the barycenter of the
information set, square, which places the label at the center of the square that contains the
information set, a number <float> in (0, 1), which places the label at a fraction <float>
of the way from the first state to the last state in the information set, a <direction>,
which places the label at angle <degree> from the first node of the information set, or a
pair <direction>:<label radius>, which also places the label in the <direction> but
at a potentially different radius. Admissible values for <direction> are any of the eight
cardinal directions left, above left, above, etc. or an angle in degrees outside of the
interval (0, 1). Within a gametree, the initial value is 135 if the information set is dashed
or curved and the initial value is center otherwise. In any other environment, the initial
value is none if no <label text> is provided. If a <label text> is provided, the initial
value is center unless the information set consists of several connected components, in
which case it is square in the first connected component.

label radius = <num>:<length> indicates that the label is placed at a distance of player <num>’s radius
plus <length> (plus <label sep>) from the center of the information set. It is also possible
to specify only a player number <num> or only a <length>; see Figure 33.

label sep = <length> specifies the distance of the closest point of the label’s bounding box from the
outer rim of the information set.

line = <line spec> specifies how the line of an information set is drawn. Allowable values of
<line spec> are any key-value pair that is understood by the TikZ draw command. The
intended use is for values like dashed, dotted, etc.

line width = <length> specifies the line width used to draw the information set. You can also change
the line width with the 7 default TikZ line width keys thin, thick, very thick, etc.

player = <num> sets the active player to <num>. This sets the default color and label to the active
player’s color and name, respectively, or the active player’s number if the key labels=short
is set. The change of active player is global, hence future calls of \state, \informset, and
\branch use the same defaults unless the active player is changed.

radius = <length> specifies the radius of the information set.

39



Finally, the following auxiliary commands may be helpful when drawing hybrid figures, i.e., when
information sets are drawn outside of the beliefspace environment.

\coord (<name)> at (<coord>); defines a coordinate at (<coord>), whose name is (<name>-is)
if the left or center keys are set and its name is (<name>) otherwise.

\event «overlay»[<options>] <list of coordinates> {<label text>}; is a shorthand for an
\informset[player=0, <options>] command with identical arguments.

\informsetradius [<num>]{<list of lengths>} sets the default radii, starting with player <num>, to the
elements of the comma-separated <list of lengths>. The default value of <num> is 1.

Example: The command \informsetradius[0]{5mm, 3mm, 4mm} sets the environment
keys event=5mm and radius={3mm, 4mm} globally.

\informlabel «overlay»[<options>] (<label spec>) at (<coord>) <label text>; places a label
<label text> according to the same specifications as if it was passed as a label to an
\informset[color=xg-fg, base line=false, <options>, label=<label spec>] with
first coordinate (<coord>). See the label key above for further details.

4.8 Game Trees
The main commands used to draw game trees are the \informset and the \branch commands.
The \informset is as described above, except that labels are displayed by default in the gametree
environment. Specifically, the initial value is label=135 if the information set is dashed or curved
and it is label=center otherwise. The only command left to describe is the \branch command.

\branch «overlay»[<options>] from (<parent>) to[<edge opt>] {<list of children>}; is
used to draw an individual branch from the <parent> node to the children specified in
<list of children> on the slides indicated by <overlay>. The arguments <parent>
and <list of children> are mandatory in any branch, the argument <edge opt> is
mandatory for the first branch of a tree, and the arguments <overlay> and <options>
are optional. The <parent> has to be a named TikZ coordinate unless the root key is
passed in <options>, in which case <parent> can be any TikZ coordinate. The <list of
children> is provided as a semi-colon-separated list, where each <child> is described with
the syntax <action>«highlight»[<child opt>](<payoffs>). The edge from <parent>
to <child> is labeled by <action>. The edge is boldened and highlighted in player i’s
color (black for player 0) in the slides specified in the overlay specification <highlight>.
The options <child opt> allows fine-tuning of the label and <payoffs> will generate a
terminal node with label \ap{<payoffs>} if <payoffs> is a comma-separated list and
label <payoffs> otherwise. A TikZ coordinate is placed at the position of child i with name
(<parent>i) by default or with name (<parent><action i>) if the key index=action is
set. If the arc=<angle 1>:<angle 2>:<radius> key is passed to <edge opt>, a branch
with a continuum of actions is drawn. In this case, the declaration of each child must
be preceded by <angle>: or <angle>:<child radius>:. Doing so places the child at an
offset of <angle>:<child radius> from the parent node (in polar coordinates), where the
default value of <child radius> is <radius>.

The following key-value pairs can be passed to the gametree environment or to <opt> in the \branch
command. They can also be set globally by passing them to \treesetoptions.

40



alert width = <length> specifies the line width used to highlight edges in the active player’s color.

alt = <option> specifies what is drawn on overlays, on which the branch is not drawn. If
<option> is empty, nothing is drawn. If <option> is (<list of strings>) or (), a
terminal node is placed in the branch’s stead with payoffs specified in <list of strings>
or without terminal payoffs, respectively.

debug = <option> determines whether the placement of nodes, information sets, and labels are
visualized for debugging purposes; see Figure 35. Admissible values for <option> are true,
detail, and false. The initial value is false and the default value is true.

delay contour = <bool> passes on <bool> to any nodes, edges, or information sets.

edge label placement = <option> specifies which algorithm is used to place labels of edges, where <option> may
take the values center, box, or simple. See the label placement key for details.

edge label sep = <length> specifies the distance of the closest point of the label’s bounding box from the
outer rim of the edge.

edge labels = <option> determines the default labels of the tree’s edges. If <option> is set to none,
any labels are suppressed. If it is set to inside or outside, the labels are placed inside or
outside of the branch, respectively. The initial value is outside.

font = <font spec> adjusts the font of all labels.

force math = <bool> determines whether the labels are put into math mode. The initial value is false
and the default value (if the key is passed without value) is true.

horizontal = <bool> determines whether the tree grows vertically or horizontally, which changes the
behavior of the h and v keys passed to <edge opt>; see below for the details. Moreover,
the default positions of node labels and terminal payoffs are set to the left and right of the
nodes, depending on whether the tree grows left- or rightwards. The initial value is false
and the default value (if the key is passed without value) is true.

label sep = <length> specifies the distance of the closest point of the labels’ bounding boxes from the
outer rim of the nodes, edges, and information sets typeset with the dashed or curved key.

line width = <length> specifies the line width used to draw edges, nodes, and information sets.

node label sep = <length> specifies the distance of the closest point of the labels’ bounding boxes from
the outer rim of non-terminal nodes.

node radius = <length> specifies the radius of non-terminal nodes.

offset = {<x>,<y>} offsets the center of the branch from <parent> by (<x>, <y>) in the TikZ
coordinate system.

payoffs = <direction> specifies the direction, in which terminal payoffs are placed. Accepted
values for <direction> are the eight cardinal directions left, above left, above, etc. as
well as any number, interpreted as angle in degrees.

player = <digit> sets the active player to <digit>. This sets the default color and label to
the active player’s color and name, respectively, or the active player’s number if the key
labels=short is set. The change of active player is global, hence future calls of \state,
\informset, and \branch use the same defaults unless the active player is changed.

41



G B

WaiterWaiter

T

2, 2

N

−1, 3

Client

T

−1, 3

N

0, 0

Client

1 \begin{gametree}[player names={Waiter, Client}, nodes=hollow, debug=detail]
2 \branch[player=1, root=w] from (0,0) to[h=2.6, v=1] {G; B<1->};
3 \branch[player=2, label=130] from (w1) to[h=1.3] {T(2,2); N<1->(-1,3)};
4 \branch[label=50] from (w2) to {T(-1,3); N<1->(0,0)};
5 \end{gametree}
6 \begin{gametree}[labels=none, subgame={debug}]
7 \branch[root=w] from (0,0) to[h=2.6, v=1] {G; B};
8 \branch from (w1) to[h=1.3] {T(); N()};
9 \branch from (w2) to {T(); N()};

10 \subgame at (w1);
11 \subgame[w=0.99] at (w);
12 \end{gametree}

Figure 35: The debug option visualizes that node labels are placed with the center algorithm and edge labels
are placed with the box algorithm by default. Subgames are drawn as (an extension of) a bezier curve around
the root of the subgame and its most extreme terminal nodes such that the closest points are at distance inner
sep. The debug option visualizes the control points of the bezier curve and how they are affected by the key w.

terminal = <option> determines how the terminal payoffs <payoffs> are typeset. If <option> is
set to p or n, the terminal payoffs are colorized by players. The former value encloses
terminal payoffs in parentheses and the latter does not. If <option> is set to e, labels
of terminal payoffs escape the coloring of terminal payoffs. The default values are n if
<payoffs> contains a comma-separated list and e if it contains a string without commas.

terminal label sep = <length> specifies the distance of the closest point of the labels’ bounding boxes from
the outer rim of the terminal nodes.

terminal radius = <length> specifies the radius of terminal nodes.

vertical = <bool> determines whether the tree grows vertically or horizontally, which changes the
behavior of the h and v keys passed to <edge opt>; see below for the details. Moreover,
the default positions of node labels and terminal payoffs are set above and below the nodes,
depending on whether the tree grows up- or downwards. The initial value is false and the
default value (if the key is passed without value) is true.

The following key-value pairs are available only in the gametree environment and in \treesetoptions.

edge = <list of keys> sets <list of keys> as default for every edge in the game tree.

external = <name> externalizes the resulting image as <name>.pdf or the resulting series of images
as <name>-<overlay>.pdf, depending on the document class. This option requires the
external package option, which enables TikZ’s externalization library.

index = <option> determines how the coordinate at child i’s location is named. The coordinate
is named (<parent>i) if <option> is equal to number and it is named (<parent><action

42



i>) if <option> is equal to action. For the latter to work, it is necessary that <action>
is plain text, that is, it does not contain any Greek letters, any other macros, or any other
tokens not allowed in TikZ coordinate names. The default value is number.

inform = <list of keys> sets <list of keys> as default for every \informset in the game tree.

inform autolabel = <code> automatically labels information sets in the tree with <code>. Use the macro
\pl in the <code> as a placeholder for the player’s number and the macro \enum as a
placeholder for the value of a counter that is increased with each information set. If <code>
contains the macro \pl, player-specific counters are used in \enum, whereas a global counter
is used if \pl does not appear in <code>. See Figure 17 for an example.

The <code> is fully expanded so that \pl and \enum are replaced with the correct values.
Any non-expandable macros appearing in <code> must be protected with a \noexpand.

inform radius = <length> sets the radius of every player’s information sets to <length>. Identical radii
are typically desired in game trees. If you wish to set different radii for different players,
call \informsetradius within the gametree environment.

labels = «overlay»<option> determines the labels of the tree’s nodes and the default labels of
the tree’s information sets. If <option> is set to none, any labels are suppressed. If it is set
to long, the default label is the active player’s name. If it is set to short, the default label
is the player’s number. The active player is set by the player key. The initial value is long.
Additionally, if an <overlay> is provided, labels are displayed only on the specified overlays.

node autolabel = <code> automatically labels non-terminal nodes in the tree with <code>. Use the macro
\pl in the <code> as a placeholder for the player’s number and the macro \enum as a
placeholder for the value of a counter that is increased with each node. If <code> contains
the macro \pl, player-specific counters are used in \enum, whereas a global counter is used
if \pl does not appear in <code>. See Figure 17 for an example.

The <code> is fully expanded so that \pl and \enum are replaced with the correct values.
Any non-expandable macros appearing in <code> must be protected with a \noexpand.

node label placement = <option> specifies which algorithm is used to place labels of nodes, where <option> may
take the values center, box, or simple. See the label placement key for details.

node labels = «overlay»<option> determines the default labels of the tree’s nodes. If <option> is
set to none, any labels are suppressed. If it is set to long, the default label is the active
player’s name. If it is set to short, the default label is the player’s number. The active
player is set by the player key. The initial value is long. Additionally, if an <overlay> is
provided, labels are displayed only on the specified overlays.

nodes = «overlay»<option> determines the default appearance of nodes in the tree on the slides
specified by <overlay>. If <option> is set to default or full, the nodes are filled with the
active player’s color. If it is set to empty or hollow, the nodes are filled with the package
background color xg-bg. For options full and hollow, the node’s rim is drawn in the
active player’s color, for options default and empty, it is drawn in the package foreground
color xg-fg. Option clear is identical to empty, except that labels are suppressed. The
initial value is default.

path = <option> determines how edges are highlighted, where <option> is line or arrow.

43



player names = <list of strings> sets the players’ names starting from player 1 to the strings in
<list of strings> and sets the key players=true. The player names are set globally,
hence they will be available after the gametree through the command \pli.

root = <option> specifies the style in which the root of the tree is drawn. Admissible options
are default, empty, full, and hollow with the identical effect as when they are specified
in the nodes key. Additionally, root=clear resets the special styling of the root node and
the same style is used by default for other non-terminal nodes. The initial value is clear.

scale = <factor> scales the game tree by <factor>.

strategy = <list of keys> sets <list of keys> as default for every \strategy in the game tree.

subgame = <list of keys> sets <list of keys> as default for every \subgame in the game tree.

tikz nodes = <bool> determines whether states are implemented as a full-fledged TikZ node with
path-shortening features or only as a coordinate with a circle-shaped path representation.
If the nonode package option is specified, the initial value is false, otherwise it is true. The
default value (if the key is passed without value) is true.

xscale = <factor> scales the belief space by <factor> in the x-direction.

yscale = <factor> scales the belief space by <factor> in the y-direction.

The following key-value pairs are available only as <options> in the \branch command.

autolabel = <code> automatically labels all following non-terminal nodes in the tree, starting with
the parent of the current \branch. Use the macro \pl in the <code> as a placeholder for
the player’s number and the macro \enum as a placeholder for the value of a counter that
is increased with each node. If <code> contains the macro \pl, player-specific counters
are used in \enum, whereas a global counter is used if \pl does not appear in <code>. See
Figure 17 for an example.
The <code> is fully expanded so that \pl and \enum are replaced with the correct values.
Any non-expandable macros appearing in <code> must be protected with a \noexpand.

contour = <bool> determines whether a contour of the package background color xg-bg is drawn
around the node’s label. The initial value is false and the default value (if the key is
passed without value) is true. The contour is drawn using the contour package. Setting
contour=delay is equivalent to setting contour=true and delay contour=true.

label = <option> specifies how the label of the <parent> node is typeset. The <option> can
either be none, in which case the label is suppressed, it can be a <float>, in which case
the default player label is set at angle <float>, or it can be <float>:<text>, which is
shorthand for label=<float> and label text=<text>.

label text = <text> sets the parent’s label to <label text>. If parent labels are disabled by default,
it is enabled for the current \branch.

node = «overlay»<option> determines the appearance of the <parent> node on those slides
specified in <overlay>. Any defaults specified in the environment key nodes are overridden
by this key. If <option> is set to default or full, the nodes are filled with the active
player’s color. If it is set to empty or hollow, the nodes are filled with the package

44



background color xg-bg. For options full and hollow, the node’s rim is drawn in the
active player’s color, for options default and empty, it is drawn in the package foreground
color xg-fg. Option clear is identical to empty, except that labels are suppressed. The
initial value is set by the nodes key at the environment level.

player = <digit> sets the active player to <digit>. This sets the default color and label to
the active player’s color and name, respectively, or the active player’s number if the key
labels=short is set. The change of active player is global, hence future calls of \state,
\informset, and \branch use the same defaults unless the active player is changed.

root = <string> specifies that <parent> is the root of the tree. The TikZ coordinates of any
node x in the tree will be named (<string><sequence of actions from root to x>,
where the “actions” in the sequence are either the literal actions if the index=action key
is set or the index of the actions if the index=number key is set.

The above keys contour, delay, font, label placement, label sep, and line width can all be
passed to <edge opt> in the \branch command, in which case they only affect the edges and their
labels. Keys alert width and payoffs can also be passed to <edge opt> with the exact same effect
as if they are passed to <options>. The following key-value pairs can only be passed to <edge opt>
or they can be set globally by passing them to the \edgesetoptions command.

arc = <angle 1>:<angle 2>:<radius> is used to draw a branch with a continuum of actions,
represented by a sector with radius <radius> from <angle 1> to <angle 2>. If this key is
set, the declaration of each child in <list of children> has to be preceded by <angle>:
or <angle>:<child radius>:. Doing so places the child at an offset of <angle>:<child
radius> from the parent node (in polar coordinates), where the default value of <child
radius> is <radius>. By default, the edge label as well as the label of the parent that is
drawn next are offset from the sector by a white contour.

arc color = <color> sets the color of the sector used to draw continuous-action branches to <color>.
The initial value is a 10% xg-fg.

color = <color> sets the color of the edges to <color>. The initial value is xg-fg.

e = <bool> escapes colorizing terminal payoffs if set to true. If this option is set, <payoff>
is typeset directly as the terminal payoff’s label. The initial value is false and the default
value (if the key is passed without value) is true.

etc = <bool> draws the center half of the edge in a dashed pattern if set to true.

h = <list of num> is a comma-separated list that determines the horizontal placement
of <list of children>. If <list of children> contains a single child or the tree is
oriented horizontally, the horizontal distance from <parent> and child i is given by element
mod(i − 1, n) + 1 of <list of num>, where n is the length of <list of num>. If <list
of children> contains more than one child and the branch is oriented vertically, children
i and i + 1 are horizontally separated by element mod(i − 1, n) + 1 of <list of num>.

labels = <option> determines the default placement of edge labels. If <option> is set to none,
labels are suppressed. If <option> is set to inside or outside, the default position of
labels are inside or outside, respectively, of the edges. The initial value is outside.

45



1 \begin{gametree}[node labels=none, inform={curved=15,
label=none}, edge={contour=delay, label sep=1ex}]↪→

2 \branch[root=w] from (0,0) to[v=0.8, h=3] {t; n};
3 \foreach[count=\i] \s in {+, -} {
4 \branch[player=1] from (w\i) to[v=0.9, h=\s1] {B(); N};
5 \branch[player=2] from (w\i2) to[h=1] {B(); N()};
6 }
7 \foreach \x in {, 2} {\informset (w1\x) -- (w2\x);}
8 \strategy[prob=1.6]{1/3; 1/3; 1/2}
9 \end{gametree}

tt nn

BB NN

BB NN

BBNN

BB NN

Figure 36: You can stylize individual components of a gametree by setting the default key-value pairs of
\informset, \strategy, \subgame, and the to-component of a \branch by passing them to the environment keys
inform, strategy, subgame, and edge. This is equivalent to calling \informsetoptions, \strategysetoptions,
\subgamesetoptions, and \edgesetoptions inside the gametree environment. In this example, the \strategy
is parametrized information set by information set rather than player by player. Note that Player 1’s actions
have to appear in the same order in (the code of) both \branches for \strategy to match them up correctly,
even though B visually appears to the right of the right branch.

n = <bool> colorizes terminal payoffs by players without enclosing them with parentheses if
set to true. If this option is set, terminal payoffs are typeset as in \apm. The initial value
is false and the default value (if the key is passed without value) is true.

open = <bool> draws the edge in a “trailing-off” pattern to indicate an evergrowing game tree if
set to true.

p = <bool> colorizes terminal payoffs by player and encloses them with parentheses if set to
true. If this option is set, terminal payoffs are typeset as in \ap. The initial value is true
and the default value (if the key is passed without value) is true.

pos = <fraction> sets the default label placement at <fraction> of the way from <parent>
to <child>. The <fraction> accepts any formulas that can be parsed by \pgfmathparse.

v = <list of num> is a comma-separated list that determines the vertical placement of
<list of children>. If <list of children> contains a single child, the vertical distance
from <parent> and the child is given by the first element of <list of num>. If <list of
children> contains more than one child and the branch is oriented vertically, the vertical
distance from <parent> and child i is given by the negative of element mod(i − 1, n) + 1
in <list of num>, where n is the length of <list of num>. If <list of children>
contains more than one child and the branch is oriented horizontally, children i and i + 1
are vertically separated by element mod(i − 1, n) + 1 of <list of num>.

The above keys e, n, p, etc, and open can be passed to <child opt> in the \branch command, in
which case they affect only the terminal payoff of exactly that child. Moreover, the following keys can
be passed only to <child opt>.

l = <bool> places the edge label of that particular child to the left of the edge viewed from
<parent> to <child>. The default value (if the key is passed without value) is true.

r = <bool> places the edge label of that particular child to the right of the edge viewed from
<parent> to <child>. The default value (if the key is passed without value) is true.

46



<float> places the edge label of that particular child at a fraction <float> of the way from <parent>
to <child> if <float> is a number in the open interval (0, 1). The initial value is 0.52,
which can be changed by providing the pos key to <edge opt>. If <float> is a number
outside of (0, 1), terminal payoffs are placed in direction <float> of the terminal node.
The <float> accepts any formulas that can be parsed by \pgfmathparse.

Finally, subgames are typeset with the \subgame command.

\subgame «overlay»[<options>] at (<coord>) {<label>}; displays the subgame starting at the
coordinate (<coord>) on the overlays specified by <overlay>. The <label> is optional.

The key-value pairs available for <options> are the following. Those keys can be set globally with the
\subgamesetoptions command, for the entire environment by passing them to the subgame key of
the gametree environment, or for each individual \subgame.

color = <color> sets the color of the \subgame and its label to <color>. The initial value is the
package foreground color xg-fg.

dir = <direction> indicates in which direction the subgame grows (i.e., the apex lies in
the opposite of this <direction> from the root of the subgame). Admissible values for
<direction> are any of the eight cardinal directions left, above left, above, etc. or an
angle in degrees. The algorithm will try to determine this direction automatically, but it
may need some help for unusual game trees like the signaling game in Figure 19.

debug = <bool> indicates whether label placement and the control points of the bezier curve are
visualized; see Figure 35. The initial value is false and the default value is true.

depth = <dimen> determines how much beyond the terminal node the subgame extends. The initial
value is 2.8ex so that it includes the labels of terminal nodes in vertically oriented trees.

font = <font spec> adjusts the font of the label.

inner sep = <dimen> sets the distance of the closest point of the bounding bezier curve from the root
and the terminal nodes of the subgame.

label = <direction> specifies the direction, in which the label is placed from the apex of the
subgame. Admissible values for <direction> are any of the eight cardinal directions left,
above left, above, etc. or an angle in degrees. The initial value is 135.

label sep = <length> specifies the distance of the closest point of the label’s bounding box from the
outer rim of the apex of the subgame.

line = <line spec> specifies how the line of a subgame is drawn. Allowable values of <line
spec> are any key-value pair that is understood by the TikZ draw command. The intended
use is for values like dashed, dotted, etc. The default value is dashed.

line width = <length> specifies the line width of the subgame.

w = <option> determines the shape of the subgame, where <option> is a number in [0, 1) or
a pair of such numbers, governing each side of the subgame separately. In the coordinate
system in the direction of the apex, each control point of the apex is set at 0.8w of the
horizontal distance of the corresponding terminal node. The control point of each terminal
node is set at horizontal distance (1+w)/2 from the apex; see Figure 35.

47



4.9 Strategies
Strategy profiles can be visualized in two ways with this package. Within a gametree environment, the
\strategy command displays the probability distribution induced over the game tree. The automaton
representation of strategy profiles is treated in Section 4.10.

\strategy «overlay»[<options>]{<strategy profile>} displays the probability distribution in-
duced by <strategy profile>. The strategy profile can be parametrized in one of two
ways. The first method is to parametrize it by players, then by information sets. In that
case, players are separated by ampersands in the input, information sets are separated
by semicolons, and the probabilities of actions within the same information set are sepa-
rated by commas. The second method is to parametrize the strategy profile directly by
information sets, regardless of which player they belong to. In either case, information
sets and actions have to be specified in the same order in which they were defined using
the \branch command. The \strategy command has to appear in the same gametree
environment of its corresponding extensive-form game. The \strategy command is not
compatible with the option index=action of the gametree environment.

The following options are available for the \strategy command.

positive only = <bool> indicates whether off-path branches are highlighted using the players colors. If
set to true, the same effect is generated as if a overlay specification <overlay> is passed
to <child opt> of the \branch command.

prob = <float> sets the vertical height of one unit of probability to <float>.

root = <name> specifies that the coordinate (<name>) arises with probability 1. The initial
value is the root of the tree, but other values can be specified to visualize the conditional
distribution in a subgame.

show prob = <option> determines whether and on which slides of the frame the probabilities of each
action are indicated. Admissible values for <option> are true and false, turning on or off
those values for all slides of the overlay, or a comma-separated list of <strategy options>
indicated below, possibly preceded by an overlay specification. The initial value is false
and the default value is (if the key is passed without value) true.

show terminal = <option> determines whether and on which slides of the frame the probabilities of the
terminal nodes are indicated. Admissible values for <option> are true and false, turning
on or off those values for all slides of the overlay, or a comma-separated list of <strategy
options> indicated below, possibly preceded by an overlay specification. The initial value
is false and the default value is (if the key is passed without value) true.

The admissible <strategy options> are frac, which typesets the values in fractional form, or path,
which suppresses the output off the strategy profile’s path. Both options are disabled initially.

4.10 Automata
The main commands used to draw automata are TikZ’s own \node[atm] command and the \edge
command that simplifies drawing arrows in automata. The package also provides the command
\atmstate to mark up the definition of strategy profiles as in Figure 26.

48



\edge «overlay»[<options>] <sequence of segments>; displays state transitions between au-
tomaton states. The syntax of each segment in the sequence is of the form (<from coord>)
<direction and labels> (<to coord>), where (<from coord>) and (<to coord>) have
to be named coordinates and <direction and labels> is either ->, <-, or <-> with op-
tional labels on either side of the arrows.

The following key-value pairs are available at the environment level or they can be set globally by
passing them to \atmsetoptions. With the exception of the radius key, they can also be provided as
<options> for individual \edges.

alert color = <color> sets the color, with which arrows are highlighted when the path key is set to a
positive value, to <color>.

ap = <bool> determines whether edge labels are enclosed with $\ap$.

arrow = <line spec> specifies how the arrows are drawn. Allowable values of <line spec> are
any key-value pair that is understood by the TikZ draw command. The intended use is for
arrow shapes like ->, -stealth, etc. The initial value is -latex.

bend left = <option> specifies whether arrows are curved left. Admissible values are true or false,
which orients all arrows counterclockwise and clockwise, respectively, without changing the
curvature, and any <float>, which orients all arrows counterclockwise and sets the curvature
of non-looping arrows to <float>. The initial value is false and the default value is true.

bend right = <option> specifies whether arrows are curved right. Admissible values are true or false,
which orients all arrows clockwise and counterclockwise, respectively, without changing the
curvature, and any <float>, which orients all arrows clockwise and sets the curvature of
non-looping arrows to <float>. The initial value is 20 and the default value is true.

curv = <float> sets the curvature of non-looping arrows to <float> without affecting their
orientation.

color = <color> sets the color of the arrows to <color>. The initial value is xg-fg.

debug = <option> determines whether the placement of the label is visualized for debugging
purposes. Admissible values for <option> are true, detail, and false. The initial value
is false and the default value (if the key is passed without value) is true.

font = <font spec> adjusts the font of all labels in the automaton. The initial value is \small.

force math = <bool> determines whether the labels are put into math mode. The initial value is false
and the default value (if the key is passed without value) is true.

label sep = <dimen> sets the distance at which edge labels are typeset from the arrows to <dimen>.

line width = <dimen> sets the line width used to draw states and arrows to <dimen>.

loop angle = <angle> sets the loop radius to a length such that the angle between the beginning and
the end of looping arrows is <angle>.

loop radius = <dimen> sets the radius of any looping arrows to <dimen>.

path = <float> specifies the default line width used to draw states.

49



pos = <float> specifies that labels are typeset at a fraction <float> along the way of the
arrows. The initial value is 0.5.

radius = <dimen> sets the minimum size of the states to <dimen>.

Additionally, the loop key can be set only for individual \edges.

loop = <direction> sets this arrow to a looping arrow whose furthest point from the state is
in the direction <direction>. Admissible values for <direction> are the eight cardinal
directions left, above left, above, etc. and any angle in degrees.

At the environment level, you can set the various scale keys and enable externalization.

external = <name> externalizes the resulting image as <name>.pdf or the resulting series of images
as <name>-<overlay>.pdf, depending on the document class. This option requires the
external package option, which enables TikZ’s externalization library.

scale = <factor> scales the drawn payoffs by <factor>.

xscale = <factor> scales the drawn payoffs by <factor> in the x-direction.

yscale = <factor> scales the drawn payoffs by <factor> in the y-direction.

Finally, inline automaton states are drawn with the \atmstate command.

\atmstate «overlay»[<options>]{<label>} displays an automaton state inline with label <label>.

Any inline states are affected by the font and line width key if those are set globally. Additionally,
you can fine-tune their appearance with the following keys

inline radius = <dimen> sets the minimum size of \atmstates to <dimen>.

opacity = <float> sets the opacity of \atmstates to <float>.

xshift = <dimen> shifts the \atmstate by <dimen> in the x-direction.

yshift = <dimen> shifts the \atmstate by <dimen> in the y-direction.

5 Ease of Use
In this section I compare the code and output among the various game theory packages. The sgamex
and egameps are based on pstricks, whereas istgame and this package are based on TikZ. As a
consequence, sgamex and egameps compile faster, but trees drawn by istgame and this package can
easily be marked up with any TikZ commands.

5.1 Comparison to sgamex

1 % sgamex
2 \begin{game}{2}{3}[Player~1][Player~2][\(A\)]
3 & \(L\) & \(M\) & \(R\)\\
4 \(T\) &\(2,2\) &\(2,0\) &\(0,3\)\\
5 \(B\) &\(3,0\) &\(0,9\) &\(1,1\)
6 \end{game}

50



1 % xgames
2 \matrixsetoptions{w=1.2, h=0.6, force math}
3 \begin{matrixgame}[players, top={L, M, R}, left={T, B},

bottom=$A$]↪→

4 \payoffmatrix{2, 2 & 2, 0 & 0, 3\\ 3, 0 & 0, 9 & 1, 1}
5 \end{matrixgame}

2, 2 2, 0 0, 3
3, 0 0, 9 1, 1

L M R

T

B

A

Pl
ay

er
1

Player 2

The above is a comparison of the code and output between the strategic-form game in Figure 4 of
the documentation of version 1.0 of the sgamex package. For a strategic-form game represented in a
single payoff matrix, the code is relatively similar. Whether one prefers the compact input format of a
list of optional arguments or a more modular approach using the key-value syntax and/or separate
label commands will be a matter of taste. Note, however, that the code doubles with sgamex if there
are two payoff matrices, whereas only one additional line is needed with this package.

1 % sgamex
2 \begin{game}{2}{2}
3 &\rnode[t]{a12}{\(L\)} &\(R\)\\
4 \Rnode[href=20]{a21}{\(T\)} &\(1,1\) &\Rnode{a23}{\(2,2\)}\\
5 \(B\) &\rnode[b]{a32}{\(2,2\)} &\(3,3\)
6 \end{game}
7 \strike{a21}{a23}
8 \redStrike{a12}{a32}

1 % xgames
2 \begin{matrixgame}[top={L, R}, left={T, B}]
3 \payoffmatrix{1, 1 & 2, 2\\ 2, 2 & 3, 3}
4 \strike<2->{h}{1}
5 \strike<3->{v}{1}
6 \end{matrixgame}

1, 1 2, 2
2, 2 3, 3

L R

T

B

The above is a comparison of the code and output between the strategic-form game in Figure 10 of
the documentation of version 1.0 of the sgamex package. When striking through actions, there are
some advantages to this package. One need not define the nodes for the strikes manually, the strike
command is overlay aware, and if the game is defined by several payoff matrices, the same actions is
stricken through in all payoff matrices with a single call.

5.2 Comparison to egameps

1 % egameps
2 \begin{egame}(1200,380)
3 \putbranch(700,340)(3,1){600}
4 \iib[linecolor=red][]{\(1\)}{\(A\)}{\(D\)}[][\(0,1\)]

51



5 \initialtrue
6 \putbranch(700,340)(1,1){200}
7 \egactionlabelsep=0.5mm
8 \iib{}{\(B\)}{\(C\)}
9 \egactionlabelsep=1mm

10 \putbranch(100,140)(1,1){100}
11 \iib[][linecolor=red]{}{\(a\)}{\(b\)}[\(2,1\)][\(4,0\)]
12 \putbranch(500,140)(1,1){100}
13 \iib[][linecolor=red]{}{\(a\)}{\(b\)}[\(1,3\)][\(-1,0\)]
14 \putbranch(900,140)(1,1){100}
15 \iib[][linecolor=red]{}{\(a\)}{\(b\)}[\(-1,0\)][\(2,1\)]
16 \infoset(100,140){800}{2}
17 \end{egame}

A B C D

0, 1

11

a

2, 1

b

4, 0

a

1, 3

b

−1, 0

a

−1, 0

b

2, 1

2

1 % xgames
2 \begin{gametree}[nodes=full, root=hollow, labels=short, force math]
3 \branch[player=1, root=w] from (0,0) to[v=1.8,h=3] {A<1->; B; C; D(0,1)};
4 \branch[player=2, label=none] from (w1) to[v=1,h=1.5] {a(2,1); b<1->(4,0)};
5 \branch from (w2) to {a(1,3); b<1->(-1,0)};
6 \branch from (w3) to {a(-1,0); b<1->(2,1)};
7 \informset[dashed] (w1) -- (w2) -- (w3);
8 \end{gametree}

The above is a comparison of the code and output of the extensive-form game in Figure 4 of the
documentation of version 1.12 of the egameps package. There are numerous advantages to using this
package over egameps. First and foremost, the coordinates of the individual branches do not have to
be computed manually. This makes trees faster to draw and easier to adjust at a later point. Second,
writing a tree is more straight-forward since one only ever needs the two rather self-explanatory
commands \branch and \informset. Third, a \branch can have any number of children. Fourth,
highlighting strategies as well as drawing branches and information sets are all overlay aware. Finally,
this package comes with additional features such as adding subgames, displaying the distribution over
nodes induced by strategy profiles, and support for TikZ’s externalization library.

52



5.3 Comparison to istgame

1 % istgame
2 \begin{istgame}
3 \setistgrowdirection'{right}
4 \xtdistance{20mm}{20mm}
5 \istroot(0)[chance node]<180>{Chance}
6 \istB<grow=north>{H}[l]{\pi}[r] \istB<grow=south>{L}[l]{1-\pi}[r] \endist
7 \istroot(H0)(0-1)<180>{F}
8 \istb{(p_1,E)}[a] \endist
9 \istroot(L0)(0-2)<180>{F}

10 \istb{(p_1,E)}[a] \endist
11 \setistmathTF*001
12 \cntmdistance*{10mm}{20mm}{8mm}
13 \istroot(H)(H0-1)
14 \istb{Buy}[br] \istb{Refrain}[ar]{-E,0} \endist
15 \istrootcntm(H1)(H-1)
16 \istb{$p_2^H$}[b] \istbm \endist
17 \istroot(CH)(H1-1)<[label distance=-4pt]135>{C}
18 \istb{Buy}[br]{p_1-E-c_H+p_2^H-c_H, 2H-p_1-p_2^H}
19 \istb{Refrain}[ar]{p_1-E-c_H, H-p_1}
20 \endist
21 \istroot(L)(L0-1)
22 \istb{Buy}[br] \istb{Refrain}[ar]{-E,0} \endist
23 \istrootcntm(L1)(L-1)
24 \istbm \istb{$p_2^L$}[a] \endist
25 \istroot(CL)(L1-2)<[label distance=-4pt]-135>{C}
26 \istb{Buy}[br]{p_1-E-c_L+p_2^L-c_L, 2L-p_1-p_2^L}
27 \istb{Refrain}[ar]{p_1-E-c_L, L-p_1}
28 \endist
29 \xtInfoset(H)(L){C}[left]
30 \end{istgame}

53



H

L

ChanceChance

p1, E
F

Buy

Refrain

−E, 0

pH
2pH
2

F
Buy

p1 − E − 2cH + pH
2 , 2H − p1 − pH

2

Refrain

p1 − E − cH , H − p1

CC

p1, E
FF

Buy

Refrain

−E, 0

pL
2pL
2

F
Buy

p1 − E − 2cL + pL
2 , 2L − p1 − pL

2

Refrain

p1 − E − cL, L − p1

CC

C

1 % xgames
2 \setplayernames[0]{Chance, F, C}
3 \begin{gametree}[horizontal, edge labels=inside]
4 \branch[root=w] from (0,0) to[h=0, v=4.2, labels=outside] {$H$; $L$};
5 \foreach[count=\i] \x in {H, L} {
6 \branch[player=1] from (w\i) to[h=1.8, v=0, labels=outside] {$p_1, E$[0.46]};
7 \branch[player=2, label=none] from (w\i1) to[h=1.3, v=2.2] {Buy; Refrain(-E, 0)};
8 \branch[player=1, label=135] from (w\i11) to[arc=40:-40:1.9] {30-20*\i:$p_2^\x$[0.45]};
9 \branch[player=2, label=405-270*\i] from (w\i111) to[h=1.3, v=2]

{Buy(p_1-E-2c_{\x}+p_2^{\x}, 2\x-p_1-p_2^{\x}); Refrain(p_1-E-c_{\x}, \x-p_1)};↪→

10 }
11 \informset[player=2, dashed, label=0.5] (w11) -- (w21);
12 \end{gametree}

The above is a comparison of the code and output of the extensive-form game in Section 16.10 of
the documentation of version 2.0 of the istgame package. The code is somewhat shorter with this
package, even after discounting the for loop in the second piece of code. An advantage of this package
is again that one only needs the two intuitive commands \branch and \informset to draw the tree.
Moreover, all commands are overlay aware and coloring as well as labeling is automatic and that those
commands are overlay aware. Moreover, the key-value syntax may be easier to use than commands with
a long sequence of parameters. A distinct advantage of the istgame package is that it compiles quicker.
Drawing the above tree takes 0.151 seconds with istgame and 0.246 seconds with this package.12

12The test was performed over an average of 100 runs on a i9-10900K processor with the code by Phelype Oleinik at
https://tex.stackexchange.com/a/505840/203616.

54

https://tex.stackexchange.com/a/505840/203616


6 Frequently Asked Questions

I get a whole bunch of \GenericErrors or other confusing errors.

There are three likely causes for this:

• You are using a non-expandable macro in an autolabel or in any label within an \xforeach
loop. In this case, the solution is to precede all non-expandable macros by a \noexpand.

• The actions specified in a gametree involve characters that are not allowed in the name of a TikZ
node while the index=action is active. The easiest solution is to set index=number instead.

• There is a bug in the package’s code. Even though I may not always respond immediately,
I appreciate emails with bug reports because I want this package to be bug free eventually.

55


	Introduction
	Instructions for the Impatient
	Installation
	Reading this Documentation Quickly

	Examples
	Normal-Form Games and Text Markup
	Payoff Sets
	Belief Spaces
	Extensive-Form Games
	Automata

	Usage
	Package Dependencies
	Package Options
	Key System
	Coloring Text
	Normal-Form Games
	Payoff Sets
	Belief Spaces
	Game Trees
	Strategies
	Automata

	Ease of Use
	Comparison to sgamex
	Comparison to egameps
	Comparison to istgame

	Frequently Asked Questions

